
Article
Working memory features
 are embedded in
hippocampal place fields
Graphical abstract
Highlights
d Memory and place field features of hippocampal neurons are

a continuum

d Retrospective and prospective firing can vary even within a

single field

d Interneurons also exhibit splitter activity preserved in a novel

environment

d Bilateral medial entorhinal inactivation decreases the fraction

of splitter cells
Varga et al., 2024, Cell Reports 43, 113807
March 26, 2024 ª 2024 The Author(s).
https://doi.org/10.1016/j.celrep.2024.113807
Authors

Viktor Varga, Peter Petersen,

Ipshita Zutshi, Roman Huszar,

Yiyao Zhang, György Buzsáki
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SUMMARY
Hippocampal principal neurons display both spatial tuning properties and memory features. Whether this
distinction corresponds to separate neuron types or a context-dependent continuum has been debated.
We report here that the task-context (‘‘splitter’’) feature is highly variable along both trial and spatial position
axes. Neurons acquire or lose splitter features across trials even when place field features remain unaltered.
Multiple place fields of the same neuron can individually encode both past or future run trajectories, implying
that splitter fields are under the control of assembly activity. Place fields can be differentiated into subfields
by the behavioral choice of the animal, and splitting within subfields evolves across trials. Interneurons also
differentiate choices by integrating inputs from pyramidal cells. Finally, bilateral optogenetic inactivation of
the medial entorhinal cortex reversibly decreases the fraction of splitter fields. Our findings suggest that
place or splitter features are different manifestations of the same hippocampal computation.
INTRODUCTION

In addition to their well-studied spatial tuning properties,1,2 hip-

pocampal neurons also possess memory features (for reviews,

see Duvelle et al.3 and Hasselmo and Eichenbaum4). A particular

form of activity occurs when a rat runs repeatedly through the

same location but neurons fire at different firing rates biased

by working memory demands.5 Such differential spiking pat-

terns, colloquially referred to as ‘‘splitter’’ fields,6–8 are typically

quantified in the central arm of a maze, and the differential firing

patterns of neurons on correct and error trials can distinguish

either the past or future run paths of the animal (referred to as

‘‘retrospective’’ or ‘‘prospective’’ splitter fields7,9).

The discovery of splitter cells signaled a conceptual departure

from the spatial navigation view of the hippocampus, and splitter

fields appeared to provide an entry point for the physiological

examination of the memory function of the hippocampus.3,10,11

Splitter neurons4,7,12–16 have been used to study context- and

schema-dependent activity,5,17,18 journey dependence,9,19–21

‘‘policy-’’ or goal-related activity,22 and trajectory coding,23–25

but they refer to the same internally organized process, as

opposed to place cells, whose firing fields are traditionally

believed to ‘‘represent’’ particular constellations of the currently

perceived environment.1 This departure from the spatial map-

ping view of the hippocampus led to the tacit assumption that

there are (at least) two functional types of neurons in the hippo-

campus, place cells and splitter (memory) cells, although such
This is an open access article under the CC BY-N
division did not lead to the identification of special and distinct

features of the alleged different types. In fact, the fraction of

splitter cells varies extensively across studies (for review, see

Duvelle et al.3), and the questions remained whether all hippo-

campal neurons can show both place fields and memory fields

and whether it is only the experimental conditions that bias the

expression of place or memory features. A recent challenge to

the memory function of hippocampal neuronal firing comes

from a report that suggests that splitter features of hippocampal

pyramidal neurons are inherited from the prefrontal cortex and

conveyed directly to the hippocampus via the nucleus reuniens

of the thalamus.25 In addition, an influential recent review

concluded that non-spatial firing features are, in fact, secondary

manifestations of the spatial map.26

Given the conceptual importance of the splitter (memory)

feature of neuronal spiking, we reexamined the relationship be-

tween place fields and splitter fields. Because previous studies

already suggested that the fraction of splitter fields is affected

by the delay between responses in a spatial alternation task,5

we trained two groups of mice with and without delays in one

or two environments and examined firing characteristics of

both pyramidal cells and interneurons.Wedemonstrate a contin-

uum of place fields and splitter fields. To address the inheritance

issue, we reversibly disconnected the hippocampus from its up-

stream medial entorhinal input and found that bilateral inactiva-

tion of upstream inputs decreased the fraction of splitter neurons

in the hippocampus.
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Figure 1. Context-selective spiking activity in spatial alternation tasks

(A) Superimposed travel trajectories of two example mice in a continuous alternation task session and a delayed alternation task session, respectively. Central

arm (pink), transition zone (green), reward areas (red), and delay zone (light, semi-transparent green) are indicated.

(B) Divergence of travel trajectories in left versus right trials (blue) and speed (red) in the central arm calculated in 2-cm spatial bins. The vertical line at 20 cm (left

plot) marks the start of the central arm in calculations of continuous sessions (0–20 cm was designated as a transition zone).

(C) Place/splitter fields in the central arm in an example session of the continuous alternation task. Spikes during left and right trials are marked by blue and red

dots, respectively.

(D) Tuning curves (TCs) of place cells (PCs) shown in (C). Orange and yellow boxes mark place fields. The neuron marked by the gray rectangles in (C) and (D) are

further analyzed in (E) and (F).

(E) Left and right spiking activity per trial of the neuron. Color-coded FR: firing rate.

(F) Selectivity index (SI) per trial, calculated from spike rate difference in non-overlapping left/right trial pairs for each spatial bin (see Figure S1 for details). Blue

and red represent left and right turn predictions, respectively.

(G) Color-coded SI as a function of the animal’s position on the maze. Note the flip of the SI at different positions in the central arm.
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RESULTS

Neurons from the hippocampal CA1 region were recorded with

multiple-shank silicon probes in mice (n = 9) while they per-

formed in a rewarded spatial alternation task in a modified

figure-8 maze (Figure 1A).27 One group was trained to complete

at least 40 alternations (n = 5 mice, 128 ± 34 trials) without delay

(continuous task), whereas a 5-s delay was introduced for the

other group (delayed task: n = 4mice, 30 ± 8 trials). Well-isolated

neurons were separated into putative pyramidal cells and inter-

neurons based on their spike count and autocorrelation28

(STAR Methods). The x-y-z position of the animal’s head was

monitored with a 6-camera motion capture system (continuous

task)29 or by an overhead camera (delayed task), which showed

that the animal’s head position during left and right trials varied

less than 2 cm in the central arm (Figure 1B; median, interquartile

range [IQR]: 1.7, 2.2 cm).

Based on a double-threshold place field detection (see STAR

Methods), 2,412 of 2,912 putative pyramidal cells had a place
2 Cell Reports 43, 113807, March 26, 2024
field on the maze, of which 1,225 possessed a place field in

the central arm (see Figure S3 for the distribution of place fields;

Table S1). Our analyses were confined to neurons that had place

field peaks in the central arm. Figures 1C, 1D, and 1G illustrate

seven central arm place cells recorded in a single continuous

alternation session, with spikes during left and right trials shown

in blue and red, respectively. The firing rates and spatial occu-

pancy of the spikes were distinct on left and right trials (referred

to as ‘‘context’’ in this paper),25,30 identifying them as splitter

cells.6,7 To quantify this left/right asymmetry, we utilized different

measures for single-neuron analyses (see Figure S1 for details).

First, we introduced a ‘‘selectivity index’’ (SI) with values 1 and –1

corresponding to maximum arm-choice selectivity by calcu-

lating a ‘‘change ratio’’ [(a + b)/(a � b)] based on non-overlap-

ping, consecutive trial pairs (i.e., 1–2, 3–4, 5–6, 7–8, .; –1 or 1

can be either left or right, depending on whether the 1st trial

was right or left, respectively; see STAR Methods for further de-

tails). SIs were used to create an ‘‘SI map,’’ enabling the analysis

of context-correlated activity along both the spatial (bin) and trial



Figure 2. Context selectivity is a continuum
(A–D) Example neurons with varying degrees of context selectivity: highly selective (splitter, A) and moderately selective (B–D) pyramidal cells. Top plots: po-

sition – trial rasters (blue dots: left trial spikes, red dots: right trial spikes) and trial-by-trial selectivity (right); bottom plots: separate left and right trial TCs and their

bin-by-bin difference by Wilcoxon rank-sum test, termed dissimilarity (blue, red, and orange lines, respectively).

(E) Position-dependent average selectivity of place fields in the continuous (top) and delayed (bottom) tasks (mean ± SD is shown). The vertical dashed line marks

the beginning of the central arm in the continuous task.

(F) Selectivity plotted against within-place field left-right firing rate difference of TCs (absolute value of log p values as the orange lines in A–D; dissimilarity).

(G) Both selectivity and dissimilarity are significantly higher in the continuous alternation versus delayed task, even if only amatching number of randomly selected

continuous trials (CS) was used for the comparison (n = 206 place fields in continuous versus n = 1,342 place fields in delayed; Wilcoxon rank-sum test,

***p < 0.001).

(H) Distribution of context classification accuracy (1 – false classification rate) based on both infield and outfield activity (see Figure S1). The goodness of

predicting correct trials is based on classification of TCs by an ensemble-bagged tree classifier, which was higher in the continuous alternation task (n = 177 and

1,048 neurons in continuous and delayed alternation tasks, respectively; Wilcoxon rank-sum test, ***p < 0.001).

(I) Error rate (proportion of error trials) was lower in continuous compared to delayed alternation task (inset: n = 27 continuous versus n = 14 delayed alternation

sessions; Wilcoxon rank-sum test, ***p < 0.001), and the session error rate was inversely correlated with selectivity (continuous: R = �0.7, p < 0.0001; delay:

R = �0.79, p < 0.0001).

(J) Position-resolved context selectivity quantified by population vector analysis using population vectors as inputs of the context classifier.

(K) Mean population-vector-based context selectivity in every session. Median, interquartile, and 10–90 ranges and outliers are shown (n = 27 continuous

sessions by 31 spatial bins and n = 14 delayed sessions by 35 spatial bins; Wilcoxon rank-sum test, ***p < 0.001).
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number dimensions (Figures 1F and 1G). Additionally, selectivity

without side direction information, defined as the absolute value

of SI (range: 0–1), was used as a global measure of context-

correlated activity independent of the trial-by-trial or in-field fluc-

tuations. Second, we calculated the bin-by-bin difference of

firing rate in left versus right trials by a non-parametric unpaired

test (Wilcoxon’s rank-sum test) and used the negative logarithm
of the p value as a ‘‘dissimilarity index’’ (Figures 2A–2D and 3A–

3F, bottom plots), which quantified the significance of side

preference along the spatial axis. Third, we also determined

how accurately the left or right choice (context) of the mouse

could be predicted by an ‘‘ensemble-bagged tree classifier’’

using single-trial tuning curves as predictors, a measure that

served to quantify how well contextual information (i.e., side
Cell Reports 43, 113807, March 26, 2024 3
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choice) is reflected by the trial-by-trial fluctuation of activity

(Figure S1).

Conjunctive place and predictive properties of splitter
cells
The classical definition of splitter cells is based on firing rate dif-

ferences between left and right trials, emphasizing their distinct

memory features separate from place cells.6,7 In contrast to

this distinction, we observed a continuum between classical

place and splitter cells in both tasks, indicating that the term

splitter field depends on an arbitrary threshold. The magnitude

of the SI varied as a function of both firing rate difference and

the spatial separation of left and right trial fields along the direc-

tion of run (see Figure 1G). Within the same field, rate could vary

from maximum firing in one direction to virtually no firing when

the mouse turned in the opposite direction (Figure 2A; classical

splitter neuron). Yet, left and right firing fields of the same neuron,

even with similar peak rates but with some spatial offset, yielded

significant selectivity and dissimilarity (Figures 2B–2D). Both

measures were higher and correlated with each other in the

continuous, but not in the delayed, task (Figures 2E, 2F, S3E,

and S3G). The magnitudes of selectivity were similar along the

central arm in both versions of the task. The behavioral choice

could be better predicted in the continuous than the delayed

task on the basis of trial-by-trial tuning curves (Figure 2H). As ex-

pected, selectivity inversely correlated with error rate in both

tasks but more so in the continuous version (Figure 2I). Popula-

tion vector analysis (see STAR Methods) could also accurately

predict behavioral choice, especially in the continuous task

(Figures 2J and 2K; see further analyses in Figure S1). Impor-

tantly, selectivity did not depend on the lateral (left-right) position

of the mouse in the central arm (Figures 1B and S3B).6

The SI varied not only as a function of position in the central

arm but as a function of trial number as well (Figure S4). Similar

to true place fields, many splitter fields were present on the

first trial and remained stable throughout the entire session

(Figures 2A and S4A). However, a minority of splitter cells devel-

oped or changed their context selectivity gradually or abruptly

(Figure S4C). Another minority expressed both their place fields

and SIs during early trials but switched side preference in later

parts of the session (Figure S4B). Fluctuations of SI and firing

rate were often decoupled within place fields (Figures S4D–

S4F). The context selectivity of spikes could not be explained

by unit classification error (Figure S2).

Properties of splitter cells with multiple place fields
A number of place cells possessed two or more place fields

(28% in the continuous alternation task; 37% in the delayed

task). We tested how splitter features are distributed across

two ormore place fields of the same neuron.Most dual-field neu-

rons possessed splitter fields, and, unexpectedly, the two place

fields often exhibited opposite context preference (Figure 3A).

Thus, the SIs of the two fields could vary even within the same

trial (Figure 3K). Uncorrelated context selectivity of dual-field

neurons was also observed, i.e., when one place field of a place

cell was judged as non-splitter, the second place field of the

same neuron could display splitter feature (Figure 3B). In rare

cases, both fields were biased to the same side (Figure 3C).
4 Cell Reports 43, 113807, March 26, 2024
The firing rates of the two place fields could differ or be nearly

identical (Figures 3A–3E), illustrating that simple spike count dif-

ferences cannot reliably identify splitter cells. Dual place field

neurons had similar level of selectivity as neurons with single

place fields (Figure 3G; median, IQR: 0.76, 0.51 versus 0.47,

0.6; p = 0.85, Wilcoxon’s rank-sum test). Thus, each place field

can have its distinct splitter characteristics.

While the distinction of single versus dual place fields is simple

when place fields are far apart, it becomes problematic when

place fields ‘‘fuse’’ together.31 Separation of left and right trials

could address this issue, and, as a result, seemingly single place

fields revealed their dual nature when characterized by SI and

dissimilarity index. For example, plotting tuning curves of left

and right trials separately of the large place field of the neuron

shown in Figure 3E revealed fused double fields or subfields.

Another example neuron (Figure 3F) had a higher firing rate in

the first few bins of right trials, whereas in the remaining bins of

the field, it was non-selective. The distribution of distances be-

tween the peaks of left and right subfields was skewed, with

significantly larger distances between subfields in the contin-

uous than in the delayed task (Figures 3H and 3I). To characterize

within-field context switching further, we calculated the differ-

ence between the maximum and minimum SIs within place

fields. If the entire field is biased only to one side (i.e., a simple

splitter field), then min(SI) and max(SI) will have the same sign.

If min and max have opposite signs, it is an indication of switch-

ing selectivity. This quantification revealed that a considerable

fraction of place fields exhibited dual-context selectivity (tran-

siently predicting one and then the other arm; dots concentrated

in the top left corners of Figure 3J), although, as expected, the

average of SIs of the switching fields was lower (blueish color)

than that of the side preference of consistent splitter cells. The

majority of double place field neurons in the continuous, but

not delayed, task predicted opposite choice directions (Fig-

ure 3K). In summary, side prediction is not a consistent feature

of neurons because splitter fields can differ acrossmultiple fields

and even within the same field across different trials.

Error trials reveal dynamically changing splitter
features
Spiking activity during error trials helped us disambiguate

whether the splitter fields matched future (prospective) or

past choices (retrospective7; reviewed in Dudchenko and

Wood12). Four template firing fields were constructed from cor-

rect and erroneous left and right trials. In the example shown in

Figures 4A–4F, templates of correct right and left trials matched

erroneous left and right trials, respectively, implying that splitter

fields in this case reflected past behavioral choices (retrospec-

tive7). However, the retrospective or prospective signature of a

given neuron was not fixed. Spatial bin-by-bin comparison of

the tuning curves revealed that the prospective and retrospec-

tive nature of place fields could change (‘‘flip’’) even within the

same place field of the neuron (Figures 4F and 4G). Firing fields

of dual place field neurons often had opposite (prospective

versus retrospective) correlations (Figures 4H and 4I). In the

continuous task, retrospective fields were, overall, more

frequent than prospective fields (Figure 4J). However, while

retrospective fields dominated the initial part of the central



Figure 3. Neurons with multiple splitter fields

(A–F) Spike raster plots (left) and trial-by-trial selectivity plots (right) of dual and ‘‘complex’’ field PCs. Example neurons with opposite-side-selective (A), non-

selective (B), same-side-selective (C), and variably selective (D) fields.

(E and F) Single place field cells with largely separate (E) and highly overlapping (F) left and right firing fields. Bottom: left (blue) and right (red) smoothed TCs and

their position-dependent difference by Wilcoxon rank-sum test (orange, dissimilarity).

(G) Proportion of context-independent (low; |SI|% 0.5) and context-selective (high; |SI| > 0.5) place fields of dual and single field neurons (continuous task, n = 206

fields; delayed task, n = 1,342 fields).

(H) Distribution of distances between left and right subfield peaks in continuous and delayed alternation tasks.

(I) Median and interquartile range plus outliers of subfield peak distances (Wilcoxon rank-sum test: ***p < 0.001).

(J) Context-changing fields, quantified by themaximum-minimumSI values within place fields. If min andmax have opposite signs (top left quadrant), then the SIs

switched within field (see Figure S1).

(K) Joint distribution of SI in place field 1 (PF1) versus PF2 for dual field neurons. In the continuous alternation task, the two fields mainly predicted opposite

choices (as in the example neuron in A). In the delayed task, the two fields weremore similar. PF1 and PF2 are anti-correlated in the continuous but uncorrelated in

the delayed task (continuous: R = – 0.58, p = 0.0011; delayed: R = 0.07, p = 0.27).
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Figure 4. Relationship between neuronal activity and behavioral choice

(A–E) Calculation of neural and behavioral state correlations based on correct and error TC templates.

(A) TCs of a neuron for 150 trials.

(B) Average TCs were constructed separately for each trial type (correct left, correct right, error left, and error right trials), yielding 4 trial-type templates. Next,

every single trial TC was correlated with these templates, resulting in 4 correlation values for each trial. The highest correlation was selected (‘‘trial type’’), and the

trial type it corresponded to was assigned to the given trial as inferred trial type/context.

(C) Trial-type classification. Top: trials are marked by the animal’s choices (real context). Middle: trials are marked based on the best-matching TCs. Bottom:

marking trials based on neuronal template when behavioral choicematches its template (match), trials when behavioral and spiking-inferred choices are opposite

(opp), trials when behavioral choices are best predicted from the template of upcoming choice-correlated activity (prospective, pro [P]) or past choice (retro-

spective, retro [R]).

(D) Correlations between behavioral and neuronal template prediction. Values of the matrix correspond to probability that the animal was in Triali while the

neuron’s activity best resembled Trialj. Note that in this session, thereweremanymismatches between behavioral and best neuronal template-predicted choices.

(E) Distribution of trial types.

(F) Within-field dynamics of dissimilarity index (as the orange lines in Figures 3A–3F but here between trial types indicated on the plot label) for an example single

field neuron. Green and purple curves correspond to correlation with future (pro) and with past (retro) choice. Minimum dissimilarity determines dominant

correlation. A R-P bias ranging from �1 (R) to 1 (P) was defined based on dissimilarity (see STAR Methods).

(G) Distribution of minimum versus maximum within-field RP-bias values. Dots concentrated in the top left corner correspond to fields in which R-P bias flipped

from R to P, or vice versa, within the PF. Color of dots reflects mean field R-P bias.

(H) Example dual-field neuron with different R-P biases in its two fields.

(I) Mean in-field RP-bias for all dual-field neurons from sessions withR5 error trials (PF1 and PF2). Neurons 1, 6, 8, and 9 have opp RP-biases in their two fields.

(J) Distribution of R-P biases for all fields (n = 206) in continuous sessions showing that the majority of fields were R.

(K) Distribution of within-fieldmean R-P bias in the central arm (n = 206 fields; mean ± SD). Note that the initial R correlation becomes P for the population near the

end of the central arm (Kruskall-Wallis test with position bin as factor: c2 = 92.54, p < 0.0001).

(L) Distribution of proportion of trials with a match (top) and mismatch (bottom) between behavioral choice and predicted choice from best template.

(M) Proportions of matching, opp, P, and R trials in the continuous (gray) and delayed alternation (green) tasks.
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arm, they gradually developed a prospective bias closer to the

T junction (Figure 4K). The number of trials in the delayed task

was generally too few to perform the above analyses. The tem-

plate firing fields constructed from correct left and right and

erroneous left and right trials showed that in the majority of tri-
6 Cell Reports 43, 113807, March 26, 2024
als, the side arm choice of the mouse could be reliably pre-

dicted from the matching firing fields (Figures 4L and 4M).

This finding was further corroborated by applying a classifier

to all tuning curves (Figures S5A–S5C). In addition, our analysis

of the population vectors of neurons added further support for



Figure 5. Context selectivity of interneurons

(A) Mean TCs in left/right trials of two example interneurons. Difference between the left versus right TCs is shown as a color-coded strip above the plots (themore

yellow the color, the more dissimilar neuronal activity is in left versus right trials).

(B) SI maps of the two example interneurons.

(C) Distribution of selectivity of pyramidal (place) cells and interneurons in the central arm. Note the higher selectivity of interneurons relative to pyramidal cells in

all spatial bins in the delayed task.

(legend continued on next page)
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the single neuron quantifications (Figures S5G–S5K). In sum-

mary, not only could comparison of the four distinct splitter

templates classify firing fields as retrospective or prospective,

but we also found that the initially dominant retrospective fields

gradually became prospective as the animal approached the T

junction of the maze.
Choice predicting theta cycle-cell assemblies
Since the spatial position of the animal can be decoded from theta

cycle population vectors,32 we asked whether population vectors

can also predict the mouse’s choice. Toward that goal, we imple-

mented a template-matching decoding algorithm. First, we

confirmed that theta cycle population vectors predicted the ani-

mal’s spatial position (Figure S6A; decoding error, median, IQR:

12.85, 42.83 cm and 2.45, 2.85 cm for continuous and delay ses-

sions, respectively). Left and right choice templates as well as

context-independent (non-selective) templateswere constructed,

and each theta cyclewas classified as ‘‘unbiased’’ (i.e., context in-

dependent), left-biased, or right-biased based on the best tem-

plate-position correlation estimate (Figures S6B and S6C; see

STAR Methods). The proportion of context-biased theta cycles

was uniformly distributed in the central arm in both the continuous

and the delayed tasks (Figures S6G and S6H). Thus, both spatial

and contextual information could be decoded from theta cycle

population vectors.

We also tested whether context-correlated (i.e., choice-pre-

dicting) population vectors, composed of co-active place cells,

could be detected in single theta cycles33 and found that

uniquely different assemblies were activated in left and right tri-

als (Figures S6D and S6E). However, the assembly context

selectivity, expressed as dissimilarity between average reactiva-

tion strength in left versus right trials, was not correlated with

selectivity of center arm neurons (Figure S6F). Additionally,

higher dissimilarity of reactivation was detected in the contin-

uous task, whereas it was uniformly low in the delayed task (Fig-

ure S6I). Thus, while theta cycle population vectors could be
(D) Trial classification accuracy based on the presented interneurons’ activity in co

sum test: p < 0.001).

(E) In the continuous task, location-resolved distribution of R/P activity quantified a

factor: c2 = 167.48, p < 0.0001).

(F) Proportion of different types of neuronal-behavioral state relationships (Wilco

(G) TC of an interneuron and 17 simultaneously recorded pyramidal cells in an ex

(H) TC averages of seven PCs (PC1–PC7) simultaneously recorded with interneu

(same PCs as in Figures 1C and 1D).

(I) Putative monosynaptic connections between three of the PCs (PC1, PC2, and

the cross-correlogram. Here, the significance of putative monosynaptic connect

shifting interneuron spike times by up to 5 ms repeated 1,000 times. Black dashed

none were connected to IN1.

(J) Selectivity of all recorded interneurons plotted against the proportion of putat

(R = – 0.51, p < 0.001, top and bottom lines correspond to 95% prediction interv

(K) Contribution of PCs to the activity of simultaneously recorded interneurons was

model was significantly different from a model with constant regressors). Plots sh

were used in the model; conn, only PCs with putative monosynaptic connections

regression. Differences among the 6 groups (3 models * 2 types of task) were signi

by Tukey’s honestly significant difference procedure are shown in the checke

0.01 < p < 0.05.

(L) Root-mean-square error (RMSE) of all models (all, connected, and non-con

Kruskall-Wallis ANOVA, X2 = 118.6, p < 0.001, significance of pairwise difference

8 Cell Reports 43, 113807, March 26, 2024
used to estimate future behavioral choice, the magnitude of

that estimation was poorer in the delayed task.
Choice predicting properties of inhibitory interneurons
Since several interneuron types can ‘‘inherit’’ some behavioral

properties from their presynaptic partners, including place fields

and theta phase precession,34–36 we asked if firing patterns of in-

terneurons can also report behavioral choice. A fraction of inter-

neurons showed significantly different firing rate profiles in the

central arm, i.e., they were splitter interneurons (Figures 5A and

5B; further examples are shown in Figures S7A–S7D). Similar to

pyramidal cells, interneurons in the continuous task had higher

selectivity and classification accuracy than in the delayed task

(Figures 5C and 5D). The retrospective-prospective bias of inter-

neurons in the continuous task also increased as the mouse ap-

proached the T junction of themaze (Figure 5E), and inmost trials,

the behavioral outcome correlated with the corresponding

neuronalmatching template (Figure 5F), again similar to pyramidal

cells. Inspection of the spiking activity suggested that the firing

patterns of interneurons in the maze largely followed the place

fields of simultaneously recorded pyramidal neurons (e.g., Fig-

ure 5G). Accordingly, trial-by-trial fluctuation of interneuron activ-

ity could be predicted from the simultaneously recorded place cell

firing in the central arm, especially when only the monosynapti-

cally connected subset of pyramidal cells was used for prediction

(Figures 5K and 5L and S7E–S7H). Besides firing rate fluctuation,

place cell selectivity could also be used to predict the context-

dependent firing of interneurons. Notably, firing-rate- and selec-

tivity-based predictions were not correlated, indicating that

different mechanisms are responsible for the dynamics of firing

rate and splitter activity. To gain more insight into the place-

context features of interneurons, we quantified monosynaptic

connections and spike transmission probabilities between pyra-

midal cell-interneuron (P-I) pairs (Figures 5H–5J and S7G).37 Spike

transmission probability betweenP-I pairs varied between left and

right trials, i.e., theywere splitting P-I pairs (e.g., Figure S7I). At the
rrect left and right trials (n = 112 continuous versus 498 delayed,Wilcoxon rank-

s RP-bias (�1: full R, 0: unbiased, 1: P; Kruskall-Wallis test with position bin as

xon rank-sum test: ***: p < 0.001; compare with Figure 4M).

ample continuous session.

ron 1 (IN1) and IN2 of (A) in correct left and right trials in a continuous session

PC6) and IN2. Note that PC2 did not fire enough spikes in left trials to generate

ions was tested against surrogate cross-correlograms generated by randomly

line marks p = 0.01. PC3, PC4, PC5, and PC7 were not connected to IN2, and

ive presynaptic pyramidal cells relative to all pyramidal cells in delay sessions

al).

calculated for all sessions by a linear regression model (P = probability that the

ow median, quartile range, non-outlier range, and outliers as dots. all, all PCs

were used; non-conn, PCs with no detectable connections were fed into the

ficant by Kruskall-Wallis ANOVA, X2 = 863.82, p < 0.001; significant differences

rboard: shades of gray (dark to light) = p < 0.001, 0.001 < p < 0.01, and

nected PCs). Difference among the 6 groups (3 models * 2 types of task) by

s is shown on the checkerboard.



Figure 6. Remapping of context selectivity in a novel environment

(A) Both place field and splitter field are present only in the second environment (room 2).

(B) Both place field and splitter field disappear in the second environment.

(C) Only place field, without splitter feature, emerged in the second environment.

(D) Mixed-effect neuron.

(A–D) Pyramidal cells. Right axis, p values (dissimilarity).

(E) An interneuron that loses selectivity in room 2.

(F) Interneuron with rearranged context selectivity.

(G and H) Remapping of context-selective activity of (G) pyramidal cells and (H) interneurons in delay sessions represented by plotting selectivity in a familiar

versus in a novel room (interneurons: R = 0.83, p < 0.0001; pyramidal cells: R = 0.12, p = 0.16).
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population level, the SI of interneurons showed a negative corre-

lation with the proportion of their monosynaptically connected py-

ramidal neuron partners (Figure 5J). This finding indicates that in-

terneurons integrate spikes from many upstream pyramidal

neurons and that their particular choice-correlated features are

derived from their non-uniform P-I connections.

‘‘Remapping’’ of choice-predicting activity in novel
environment
An important feature of place fields of pyramidal cells is that their

spatial relationships are different across different environ-

ments.27,38 Therefore, we examined whether splitter fields also

show such remapping.38 Three mice in the delayed group were

tested in a novel room after completing test runs in the familiar

figure-8 maze. Examples of remapping place cells and interneu-

rons are shown in Figures 6A–6F. The prevalence of splitter fields

was slightly higher in the novel compared to the familiar environ-

ment. Importantly, SI tuning curves of pyramidal neurons were

significantlydecorrelatedacrossthetwoenvironments (Figure6G),

indicating the remapping of splitter properties. In contrast, we

found a strong correlation between tuning curves of interneurons

across the two environments (Figure 6H), that is, splitter feature

was interneuron specific, in contrast to pyramidal cells.

The role of medial entorhinal cortex (mEC) in choice
prediction properties of hippocampal neurons
Splitter features of hippocampal neurons can be induced locally

or inherited from upstream regions.25 To examine the role of up-
stream inputs to the hippocampus on splitter features, we rean-

alyzed a published dataset.27 In addition to recording from CA1

neurons, these mice were also implanted with ipsilateral (n = 18)

or bilateral (n = 3) optic fibers in the mEC to optogenetically acti-

vate all types of GABAergic interneurons (by AAV5-mDlx-ChR2-

mCherry virus) and thus silencemEC output (Figures 7A and 7B).

The fraction of pyramidal neurons with place fields on the center

arm was only slightly reduced by the bilateral manipulation;

therefore, a sufficient number of fields persisted to perform

splitter cell analyses. Because bilateral manipulations led to re-

mapping,27 place fields were defined separately for no-stimula-

tion and stimulation trials. Ipsilateral silencing of the mEC did not

significantly affect the fraction of splitter neurons, defined by a

modified version of the dissimilarity index (i.e., significant

[p < 0.05] difference in the within-field average left versus right

firing rates usingWilcoxon rank-sum test). However, during bilat-

eral mEC inactivation, the fraction of splitter fields decreased

significantly (Figures 7B–7D), implying that the mEC or circuits

upstream of it may be important for the context-specific firing

of hippocampal neurons.

DISCUSSION

We found that task-context (splitter) feature of hippocampal py-

ramidal neurons is a continuum and highly variable along both

trial and position axes and that the distinction between classic

place and splitter fields depends on experimenter-biased arbi-

trary criteria and experimental conditions. Splitter features of
Cell Reports 43, 113807, March 26, 2024 9



Figure 7. Bilateral, but not ipsilateral, mEC silencing decreased the fraction of CA1 splitter cells

(A) Travel trajectory of the mouse in an example session, superimposed on the figure-8 maze. Square pulse stimulation was targeted in blocks of 10 trials to the

center arm of the track, turning on at door opening (black horizontal line) at the end of a 10-s delay between trials. The mouse’s position at the start of stimulation

across trials is shown as black dots. Stimulation stopped once the mouse crossed an infrared detector located after the mouse made a choice (magenta dots).

The maze was linearized according to the colormap as shown. Analysis was restricted to cells with a field in the ‘‘center zone’’ (yellow line).

(B) Top: linearized trajectory in gray, with spikes from a single neuron overlaid as dots. Blue and red dots: leftward and rightward baseline trials, respectively. Light

blue and light red: leftward and rightward trials during bilateral mEC stimulation, respectively. The shaded box in the background shows the center zone. Bottom

left: trial-by-trial rate maps for the same cell. Bottom right: across-trial averages for the same cell. To classify cells as splitter, the average firing across trials was

tested for significance between left and right trajectories (Wilcoxon rank-sum test). This cell was significantly splitting during both baseline and stimulation

conditions.

(C) Same as (B) but for a different cell. During mEC inactivation, the cell formed a new place field in the center zone (after trial 11) that did not distinguish between

left and right trajectories. Note that the new field persisted during subsequent baseline trials, where it discriminated between left and right trajectories.

(D) Percentage of neurons with significant left versus right firing rate differences (splitter cells) during each manipulation out of all defined PCs on the center arm.

Left of dashed line: ipsilateral silencing results from the cohort of 18mice with ipsilateral targeting only. Gray: control trials, light blue: ipsilateral mEC silencing (n =

46 sessions from 18 mice, Wilcoxon signed rank test, Z = �0.34, p = 0.7355). Right of dashed line: results from the cohort of 3 mice with bilateral mEC silencing.

Gray: control trials, light blue: ipsilateral mEC silencing, dark blue: bilateral silencing of the entorhinal cortex (Wilcoxon signed rank test, ipsilateral mEC, n = 6

sessions from 3 mice, p = 0.8125; bilateral mEC, n = 9 sessions from 3mice, p = 0.0234). *p < 0.05. Boxplots indicate mean ± SEM. Numbers of center arm place

fields/total pyramidal cells in the bilateral mice dataset (n = 3) were as follows: baseline, 116/326; during ipsilateral mEC inactivation, 92/326; during bilateral

baseline, 162/453; and bilateral mEC inactivation, 100/453. In the ipsilaterally implanted mouse dataset (18 mice), the numbers were baseline, 686/1,874 and

ipsilateral inactivation mEC, 632/1,874.
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neurons can be identified by either firing rate differences or

spatial offsets of neuronal activity, and these features can remap

across testing situations. Even typical place fields can be differ-

entiated into subfields by the behavioral choice of the animal,

and splitting subfields can evolve within a single place field. Neu-

rons can acquire or lose splitter features across trials even when

place field features remain unaltered. Two place fields from the

same neuron can individually encode both past or future run tra-

jectories, implying that splitter fields are under the control of

assembly activity. Splitter field populations initially express retro-

spective (past choice) features, which gradually evolve to pro-

spective (future choice) features along the central arm of the

maze. A fraction of interneurons can also differentiate left and

right choices by integrating inputs from their partner pyramidal

cells. Finally, we demonstrated that bilateral optogenetic inacti-

vation of the mEC reversibly decreased the fraction of splitter

fields. Overall, our findings suggest that (1) hippocampal neu-

rons are activated in ensembles, which can combine both past

and future-predicting experiences influenced by the currently

perceived environment, and (2) place or splitter features are

different manifestations of the same hippocampal computation.

Continuum of place fields and splitter fields
Previous studies have already pointed out that the fraction of

splitter fields and variability across studies not only depends

on experimenter-imposed arbitrary thresholds but also by exper-

imental design.3 In addition to confirming that in a delayed

version of the same spatial alternation task, fewer neurons

were identifiable as splitters than in the continuous version,5

we found that several aspects of the neuronal computation

differed in the two tasks. Mean selectivity was higher, and the

proportion of trials with a match between correct/erroneous

arm choices and splitter cell firing patterns was larger. The frac-

tion of splitter fields increased from start to end in the central

arm, and this fraction was also higher in the continuous than in

the delayed task. Furthermore, the correlation between selec-

tivity and left versus right tuning curve difference was higher in

the continuous task. The SI more strongly predicted the choice

outcome, and neurons with double place fields displayed mainly

opposite arm choices in the continuous task but not in its de-

layed version. The population firing rate vectors also predicted

future choices better in the continuous than in the delayed

task. In the continuous task, a high selectivity characterized

more than half of the population, and almost every place field

had some degree of context selectivity. In contrast, the highest

incidence of splitter features in the delayed task was observed

in the delay area, prior to the mouse’s entry into the central

arm, corroborating an earlier finding.5 Themovement trajectories

of the animal’s paths were also characteristically different in the

two tasks, especially in the early part of the central arm. Thus,

just a 5-s delay demand on working memory exerted a large

impact at multiple levels of neuronal organization. This implies

that hippocampal computation becomes more demanding

when delay is required between choices.

Besides working memory load, experience also influences

splitter activity.14,39 These findings imply that well-trained ani-

mals represent both central and side arms together as one

context separate from the opposite trial, the other context, irre-
spective of the overlapping stem segment. Interestingly, the

slope of regression between error rate and prevalence of splitter

activity was steeper in continuous compared to delay sessions.

Thus, insertion of delay in a trajectory not only puts pressure on

working memory but also interferes with the representation of a

trial as one context.

Making choices with splitter cells
What mechanisms are responsible for the conspicuous firing

pattern differences in the continuous versus delayed version of

this working memory task? Comparison with previous experi-

ments with longer delays may provide clues. When rats were

required to run continuously in a wheel for 15–20 s during

the delay, splitter cell populations persisted throughout the

run.24,40,41 However, the largest fraction of neurons with side

predicting features was present in the first second of the run, de-

caying rapidly with time. This rapidly decreasing fractional

change occurred in parallel with the increasing duration (‘‘time

field’’) and size of the firing fields of the neurons from the begin-

ning to the end of the delay.24 Subsequent analysis of ‘‘time

cells’’41–46 during forced running on a treadmill revealed that their

progressively expanding time fields could be described quanti-

tatively by the logarithmicWeber-Fechner law.47 The logarithmic

rule predicts a precisely linear relationship between within-trial

time-field width and elapsed time. Thus, the same logarithmic

rule seems to describe the temporal evolution of the fraction of

splitter cells and the duration and size (i.e., distance) of place

fields, suggesting that the same underlying physiological mech-

anisms are responsible for the evolving firing patterns during

working memory.

For practical reasons, splitter fields are typically reported in

the central arm of themaze,6,7 where external factors can be dis-

counted. But memory (splitter) features of pyramidal cells are ex-

pected to arise prior to the animal’s entering the delay area or

central arm. The likely time point of initiating a new neuronal tra-

jectory is consumption of the reward (‘‘evidence maximum’’), an

act which verifies the correctness of the previous choice. We hy-

pothesize that the reward creates an affordance for a change in

brain state from the theta oscillations to the emergence of sharp

wave ripples.48 This shift can trigger a new initial condition.42

From this new seed, another neuronal trajectory evolves from

the reward area through the delay box, the central arm, and

the side arm of themaze until the next reward is reached. The hy-

pothesis of evolving unique neuronal trajectories can explain the

large and small fractions of splitter fields in continuous and de-

layed tasks, respectively. Because of the logarithmic decay

rule, the fraction of future-choice-predicting neurons rapidly de-

creases after the reward is consumed and the new neuronal tra-

jectory is launched. By the time the animal enters the central arm

in the delayed version of the task, the fraction of choice-predict-

ing neurons has already decreased substantially.24

The logarithmic decay rule has implications about choices and

route execution in the maze. The highest ‘‘confidence’’ about the

future choice in the brain is present immediately after the reward-

induced brain state change, and the confidence level, as

measured by the fraction of splitter fields, decreases rapidly to

a low level by the time the animal arrives to the T junction of

the maze (often referred to as a ‘‘choice point’’). Yet, the choice
Cell Reports 43, 113807, March 26, 2024 11
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is ‘‘made’’ in the side arm immediately after the reward rather

than at the T junction. This hypothesis is supported by the behav-

ioral observation that the animal’s run from start to reward is a

smooth (‘‘ballistic’’) trajectory and that trained animals rarely

stop and pause at the postulated choice point.

Splitter cells in the hippocampus and other brain regions
Neurons with splitter features have been described in multiple

brain regions outside the hippocampus, including the entorhinal

cortex,7 the prefrontal cortex25,49 and the nucleus reuniens of the

thalamus.25 It has been suggested that a prefrontal-thalamic

neural circuit is essential for hippocampal representation of

routes or trajectories through the environment. Lesioning or op-

togenetic silencing of the nucleus reuniens substantially reduced

the fraction of splitter cells in the hippocampal CA1 neurons,

suggesting that goals are computed in the prefrontal cortex

and transferred to the hippocampus via the direct nucleus re-

uniens-CA1 path.25 Our findings expand and somewhat modify

this suggestion. While ipsilateral silencing of the mEC barely

affected the fraction of splitter fields, bilateral inactivation

reduced their fraction several-fold. This decrease was larger

than the fraction of place field decrease,27 suggesting that the

entorhinal cortex is also important for the selection of the future

path. This conclusion is supported by the similar fraction of

splitter cells present in the CA1, CA3, and dentate regions50

because neurons of nucleus reuniens project only to the CA1 re-

gion51 and thus are not expected to influence the upstream CA3

and dentate neurons. From these observations, one can assume

that the hippocampus and its partner structures interact with

each other and ‘‘decide’’ the form of the ensuing trajectory

immediately after the reward-afforded brain state change.

Thus, the future path (choice) is dictated by the past path

(memory).

Splitter features of interneurons
Fast-firing interneurons often show position-specific firing rate

changes and theta spike phase precession within their firing

fields. These features may be inherited from their monosynapti-

cally connected pyramidal cells.35–37 Inheritance can also

explain the splitter features of interneurons. If each interneuron

received equal strength input from many pyramidal cells, then

onewould expect a flat tuning curve along the entiremaze during

both left and right trials. However, input strengths to interneurons

from their upstream pyramidal neurons are highly skewed,37 re-

sulting in a biased control of interneuron firing. Interneurons with

fewer pyramidal cell partners are expected to have stronger bias

per pyramidal cell and thus accentuated selectivity, and this is

what we observed. Interneurons with fewer detected presynap-

tic pyramidal neurons had higher choice selectivity than inter-

neurons with many pyramidal cell partners.

Interneurons preserved their magnitude of SI across different

environments, in contrast to the orthogonal distribution of selec-

tivity features of pyramidal neurons. This difference can be also

explained by the skewed anatomical connectivity structure. We

hypothesize that interneurons with fewer pyramidal partners

were under the guidance of different pyramidal cells in the two

environments (because pyramidal cells remapped) but that

each small assembly exerted a stronger control on them
12 Cell Reports 43, 113807, March 26, 2024
compared to interneurons, which were innervated by large

numbers of pyramidal cells.

Limitations of the study
Some conceptual and technical caveats should be mentioned.

While the idea that the abstract cognitive map guides navigation

is a general assumption, how activity of goal-correlated neurons

is transduced to actual footsteps needed for the animal to reach

its goal has no clear mechanism. If splitter neurons arise in the

prefrontal cortex and are transferred serially to the nucleus re-

uniens, entorhinal cortex, and hippocampus/subiculum, then

the nature of the downstream actuator still remains to be discov-

ered. The activity of goal-directed hippocampal output may

affect deep layers of the entorhinal cortex, which in turn spreads

it to wide areas of the neocortex. Alternatively, the motor actu-

ator can be the lateral septum and the hypothalamus. In contrast

to such a serial route, it is also possible that the prefrontal cortex

itself can informmotor structures directly, yet it sends a corollary

return signal to the hippocampus for coordinating egocentric

goals and allocentric spatial maps. Our correlational results

cannot make these distinctions.

We found that a subset of interneurons also displayed splitter

features and assumed that they inherited them from their mono-

synaptically connected pyramidal cells. However, we do not

have a reliable physiological measure of the interneuron-pyrami-

dal inhibitory connection; thus, the possibility remains that inter-

neurons play a more active role in the generation of splitter cells

than discussed in our paper. Furthermore, the molecular identity

of the splitter interneurons (i.e., their types) could not be revealed

in the current study.

Finally, we conjectured that a unique splitter trajectory is initi-

ated after the reward, but we did not demonstrate the existence

of splitter neurons or population vector in the return arm leading

to the delay area. A comparison of firing patterns in the return

arm in correct trials and in opposite arm-choice error trials will

be needed in future experiments to address this caveat.
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Fujisawa, S., Grosmark, A., Mao, D., Mizuseki, K., et al. (2012). Large-scale

recording of neurons by movable silicon probes in behaving rodents.

J. Vis. Exp., e3568. https://doi.org/10.3791/3568.
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AAV5-hSyn-hChR2(H134R)-EYFP UNC Vector Core N/A

AAV5-mDlx-ChR2-mCherry Plasmid gift from Dr. Gord Fishell,

Virus custom prepared by Addgene

N/A

Chemicals, peptides, and recombinant proteins

Paladur cold-curing acrylic

(liquid + powder)

Kulzer International Art#:64707937

Art#:64707945

Optibond Universal dental adhesive

bottle kit

Kerr Art#:36517

Experimental models: Organisms/strains

C57BL/6NCrl Charles River IMSR_CRL:027

C57BL/6-Tg(Grik4-cre)G32-4Stl/J The Jackson Laboratory IMSR_JAX:006474

Recombinant DNA

pAAV-CaMKIIa-hChR2(H134R)-EYFP Addgene Plasmid #26969

pCAG-tdTomato Addgene Plasmid #83029

Software and algorithms

MATLAB (versions: R2018b, R2021a,

2022b, 2023a, 2023b)

Mathworks Inc SCR_001622

Phy (Python GUI for manual spike curation) Cyrille Rossant, Ken Harris et al. https://github.com/cortex-lab/phy
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Kilosort (template based spike sorting
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CellExplorer (Cell classification pipeline and

graphical interface)

Petersen et al., 2020 https://linkinghub.elsevier.com/retrieve/pii/

S0896627321006565

Custom MATLAB scripts Viktor Varga https://doi.org/10.5281/zenodo.10277331

Other

Silicon probes Neuronexus, Cambridge Neurotech,

Diagnostic Biochips (DBC)

A2x32-Poly5-10mm-20s-200-100-
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Cambridge NeuroTech, H2 (64 ch);

Cambridge NeuroTech, H3 (64 ch);

DBC P64-1-D;
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RHD2000 USB Interface Board Intan Technologies C3100

64 channel digital amplifies Intan Technologies C3314
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d All the data of this study is publicly available in the Buzsáki Lab Databank: https://buzsakilab.com/wp/public-data/.

d All custom code for preprocessing the data is freely available on the Buzsáki Laboratory repository: https://github.com/

buzsakilab/buzcode, and scripts specific for analyzing these datasets can be found on Zenodo: https://zenodo.org/records/

10277331.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT PARTICIPANT DETAILS

Datasets
This study is based on the analysis of three datasets, certain aspects of them already published. Therefore, details about animals, virus

injections, surgical procedures, behavioral tests and recordingcanbe found in the respectivepublications.27,52,53Besides the aforemen-

tioned publications, extensive description of all experiments used in this study can be found in the Buzsaki lab database (https://

buzsakilab.com/wp/projects/entry/67125/, 28; ). Hence, all procedures not relevant for this study will only be briefly mentioned here.

Animals
Only male mice were used in this study. To our knowledge, the explored phenomena are not sex-specific therefore, our findings are

expected to be valid in female subjects as well.

Dataset1

Five wild type male adult (age: P60 – P120, weight: 25–29 g) mice from the C57BL6 strain were used for this project. Mice were pur-

chased from Charles River Laboratory and were housed in the animal facility of NYU Langone Health’s Neuroscience Institute. An

AAV5.hSyn.ChR2(H134R).EYFP (UNC Vector Core) viral construct was injected into the medial septum of these mice. For this study

only control sessions without light stimulation were used or in case of one animal light was delivered outside the skull (sham stimu-

lation). In yet another mouse virally transduced axons could not be detected histologically in the dorsal hippocampus and all sessions

in this mouse were used for the current manuscript (basic information about animals and sessions used in this study can be found in

Table S1 and all further details can be looked up in the Buzsaki lab database).

Dataset2

C57BL6 adult mice (age: P90-P180, weight: 24g–30g) fromCharles River Laboratory were used in the delayed alternation task (n = 4).

Animals underwent in utero electroporation of the pAAV-CaMKIIa-hChR2(H134R)-EYFP and pCAG-tdTomato plasmids for birthdat-

ing their hippocampal pyramidal neurons for another study (see54).

Dataset3

For the mEC silencing dataset, 3 heterozygous Grik4-cre male mice (Jackson Labs, Stock No: 006474) were used for bilateral

silencing while an additional 15 Grik4-cre male mice were used for unilateral silencing (age: P120-P300, weight: 22g–39g). An

AAV5-mDlx-ChR2-mCherry viral construct was injected either unilaterally or bilaterally into the mEC with optic fiber implants

(200 mm) over each injection site. Detailed methods can be found in.27

All experiments) were approved by the Institutional Animal Care and Use Committee at the New York University Langone Health

(protocol ID: s1501466). All mice were kept in the vivarium on a 12-hout light/dark cycle and were housed in groups of 2–3 per cage

before surgery. Following probe implantation, mice were housed separately. Prior to behavior training, animals were provided (Data-

sets 1–3) water and food ad libitum. During behavioral training water accesswas restricted to 1mL/day. If mice’s weight had dropped

below 85% of pre-restriction, water restriction was terminated.

METHOD DETAILS

Behavioral training
Continuous alternation task (Dataset1)

Mice were trained to continuously alternate in a custom-modified Figure 8 maze (theta maze: Figure 1A, left). Two days prior to maze

training, mice were put on a water restriction schedule allowed to drink 1 mL/day. Before each session, mice were weighted and any

sign of deteriorating health condition was monitored throughout the water restriction schedule. After full recovery from electrode im-

plantation surgery, mice took from 5 to 10 days to reach the pre-surgery performance level of at least 40 alternations (min. 80 trials)

after which recording sessions started. Reward (5–8 mL water) was delivered at the end of both side arms (Figure 1A) after each cor-

rect trial. Wooden doors were manually placed behind the animal at the end of the side arm to prevent the mouse to move backward

and at the entrance to the opposite side arm.

Delayed alternation task 1 (Dataset2)

Details about training and task can be found in Huszar et al., 2022.54 Briefly, water-restricted mice were trained to alternate in amodi-

fied Figure 8 maze for water reward delivered after every correct trial. Every trial was preceded by a 5-s delay. Three animals further
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underwent exploration in novel environments (linear tracks, open fields and a T-maze) located in different rooms or parts of the room

separated from the one used for the delayed alternation task. Optogenetic stimulation was always performed at the end of each

recording session and never during behavior.

Delayed alternation task 2 (Dataset3)

Details about the task and training can be found in Zutshi et al., 2022.27 Water-restricted mice were trained to alternate between left

and right trials on a figure-8 maze. Each trial was separated by a 10-s long delay. Stimulation was targeted to the center arm in inter-

leaved blocks of 10 trials. Stimulation started at the end of the delay and stopped once the mice crossed an infra-red beam detector

located on the right and left arms.

Surgery
All mice in the continuous alternation group underwent a standard virus injection surgery targeting the medial septum and detailed

elsewhere (54). Four to 8 weeks after virus injection mice were implanted with one or two silicone probes under Isoflurane anesthesia.

After the loss of response to tail or foot pinch, skin above the calvaria was removed, the skull surface was cleaned from connective

tissue and covered with UV-curable cement (Kerr’s Optibond). After drying of the cement, one hole was drilled over the medial septal

area, another above the right hippocampus and a third in the occipital bone for the ground/referencewire. A base composed of dental

acrylic (Paladur, Kulzer International) was formed around the holes, a 105 mm core diameter optic fiber was lowered into the medial

septum and attached by dental acrylic to the base. Medial septum was optically stimulated through this fiber in sessions not used in

this study except in one animal in which virus injection was mistargeted thus optical stimulation did not affect hippocampal activity

(via the septo-hippocampal pathway, see Table S1). Next, a silicone probe (see Table S1) already attached to a manually assembled

microdrive (C-drive, see55) was positioned above the dorsal CA1 and the base of the drivewas cemented to the skull by dental acrylic.

In one animal two probes were implanted, each in one hippocampus. The microdrive-probe assembly as well as the optic fiber were

surrounded by a copper mesh.

Details about surgery of mice used in the delayed task can be found in Huszar et al., 2022.52 Briefly, Adult mice (3–6 months) un-

derwent silicon probe implantation into their left or right dorsal CA1 (-2mm AP, +/� 1.7 mm ML), with details as described above.

Each silicon probe- ASSY-156-E�1 (Cambridge NeuroTech), ASSY Int128-P64-1D (Diagnostic Biochips) or ASSY Int64-P32-1D

(Diagnostic Biochips)- was attached to a 3D printed recoverable microdrive56 and coupled with an optic fiber (105 mm core diameter,

Thorlabs). The microdrive – probe – optic fiber assembly was surrounded by a 3D-printed head cap.

Details about electrode implantation for Dataset3 is similar to that detailed above for Dataset2 and can also be found in Zutshi

et al.27

Recording of hippocampal activity
Five to seven days post-surgery, the probe was slowly descended into the pyramidal layer (usually in 3–4 days) identified by LFP

ripples and sharp increase of spiking activity. Probes were left in place for several days until the deterioration of the multiunit signal,

then moved about 75 mm (quarter turn of the drive screw) to record from a new set of neurons.

Spike sorting
For extracting waveforms corresponding to spikes of simultaneously recorded single units, we utilized Kilosort57 followed by

manual curation in Phy (https://github.com/cortex-lab/phy) and custom written plugins (https://github.com/petersenpeter/

phy1-plugins). Kilosort clustering was performed with the following parameters: ops.Nfilt: 6*numberChannels, ops.nt0:64; ops.

whitening:’full’; ops.nSkipCov:1; ops.whiteningRange: 64; ops.criterionNoiseChannels: 0.00001; ops.Nrank: 3; ops.nfullpasses:

6; ops.maxFR: 20000; ops.fshigh: 300; ops.ntbuff: 64; ops.scaleproc: 200; ops.Th: [4 10 10]; ops.lam: [5 20 20]; ops.nanneal-

passes: 4; ops.momentum: 1./[20 800]; ops.shuffle_clusters: 1. Unit isolation quality was judged during manual curation by in-

specting i) the autocorrelogram for refractory violating events; ii) crosscorrelogram computed between the candidate and other

clusters selected based on their similarity to the former; iii) shape of the cluster in the principal component space defined by the

first two principal components. Occasionally, waveform clusters were split manually if judged to contain separable waveforms

or clusters were merged if a clear refractory period (central trough) was possible to be identified on the crosscorrelograms of the

events in them.

Neuron classification
In the continuous sessions, neurons were first classified based on firing rate criterion as putative pyramidal cells and interneurons.

Next, the two groups were manually refined based on the presence of side peaks within 10 ms in their autocorrelogram indicating

spike bursts, characteristic of pyramidal cells. In the delayed sessions (Dataset 2), a burstiness index was calculated as

max(acg(0:10))/mean(acg(300:501)), where acg is the autocorrelogram with 1 ms binsize and ±500 ms lag.

Putative pyramidal cells with <100 spikes and putative interneurons with <1000 spikes per session were excluded from further

analysis.

In the MEC-silencing dataset, units were separated into putative pyramidal cells and narrow waveform interneurons using their

autocorrelograms, waveform characteristics and firing rate. This classification was performed using CellExplorer.28
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Calculation of tuning curves
First, the maze was divided into 2-cm bins. Firing rate was calculated in these bins by Ni/Ti, where Ni = spike count in ith bin, Ti = dwell

time in ith bin. The resulting tuning curves were smoothed first by oversampling along the spatial axis 100 times, using linear inter-

polation, then convolving the oversampled tuning curve with a 500-point Gaussian window (MATLAB’s Gausswin function) corre-

sponding to 5 bins (10 cm) and finally the smoothed tuning curve was downsampled back to the original spatial resolution.

Identification of place fields
Smoothed tuning curves were used for place field identification. First, a global threshold was defined as the mean of the smoothed

tuning curve and every point exceeding this threshold was selected and the beginning and end of continuous supra-threshold seg-

ments were marked. Segments smaller than 3 bins (6 cm) were discarded. In the next step, it was determined whether the selected

segments corresponding to putative place fields could be divided into more fields by locating local minima within them. If a minimum

with <75% of the amplitude of the neighboring peaks was found, the segment was divided into two subsegments (two fields). Next,

only fields with 50% higher amplitude than the global threshold (>1.5 x mean) were kept. Furthermore, place fields in which activity

exceeded the 1.5 x global threshold but only in less than 10 neighboring trials were excluded. Finally, putative place fields with peak

activity less than 5 times the out-of-field firing were also discarded.

Quantification of context-correlated activity
Selectivity index (SI). SI was defined as FR(i,x) – Trial(j,x)/Trial(i,x) + Trial(j,x), i: ith even trial, j: jth odd trial, i = j; x: xth bin of the stem. A

derived term, ‘‘Selectivity’’ is defined as abs(SI). While SI informs both about selectivity and its direction, Selectivity lacks directional

information.

Dissimilarity index

Spatial bin-by-bin difference of left/right (correct, error) tuning curves expressed as the negative, 10-based logarithm of p-value

calculated by Wilcoxon’s ranksum test. Selectivity index combined with dissimilarity informs about both the extent, direction and

statistical significance of context-selective activity in a given spatial bin. In all calculations, these measures were analyzed in place

fields. Out of field segments were omitted.

Trial classification accuracy

After testing multiple classification models using MATLAB’s ClassificationLearner application, an ensemble bagged tree classifier

was selected for determining how accurately the trial-by-trial tuning curves (here, both in-field and out-field activity were included)

predicted the behavioral choice of themouse. Parameters of the classification: number of splits of the template tree was 197; number

of learning cycles: 30; number of folds in cross-validated model: 5. Besides running on all trials, we also examined whether themodel

overfitted the data by classifying only the first half of sessions then using the output model parameters to test validity of classification

on the second half of sessions. A graphical summary of these procedures is presented on Figure S1.

Clustering of place fields based on Selectivity and Dissimilarity
Instead of setting an arbitrary threshold of context-selectivity (thus forming a ‘‘low’’ and a ‘‘high’’ selectivity group), we examined

whether clusters composed of differentially context-selective place fields could be formed based on Selectivity and Dissimilarity us-

ing K-means clustering. Place fields from delayed alternation sessions were clustered by using squared Euclidean distance whereas

for clustering place fields from continuous alternation cosine similarity was used. Distance metric was selected by testing clustering

using squared Euclidean, cityblock, cosine similarity and correlational distance and the metric resulting in the best clustering based

on the maximal Silhouette value was selected. By using the selected distance metric 2 to 20 clusters were formed and Silhouette

value for every clustering step was calculated. Cluster number indicated by the maximum Silhouette corresponded to the number

of groups the place fields could be separated into with the highest intergroup distance. Parameters for K-means clustering

(MATLAB’s k-means function): number of replications: 100, number of iterations: 1000.

Retrospective – Prospective bias of neuronal activity
We have estimated if a neuron’s activity was affected by the past or by the upcoming choice of the animal by correlation-based as

well as a Dissimilarity-based procedure. For the correlation-based approach (Figures 4A–4E), tuning curve averages were generated

by mean(TCTtype), where Ttype: correct left, correct right, error left, error right. Then, each single trial tuning curve in a session was

correlated by Spearman rank correlation with these templates and an inferred context was assigned to the trial based on which tem-

plate the given single trial tuning curve was correlated with the most (only correlation with p < 0.05 were used). This inferred context

was then compared to the real context (or trial type) the animal was running in. This comparison resulted in one of four possible

outcomes: match (inferred = real context), retrospective (inferred = previous trial’s tuning curve, i.e., error right – correct left, error

left – correct right), prospective (inferred = next trial’s tuning curve, i.e., error left – correct left, error right – correct right), opposite

(inferred = opposite real context, i.e., correct left – correct right, error left – error right). For sessions with a minimum of 5 error left

and/or 5 error right trials, we have also implemented a Dissimilarity-based procedure: Dissimilarity index was calculated for every

spatial bin between correct left/right and error left/right trials and minimum Dissimilarity was determined. We used here Dissimilarity

for estimating the extent of similarity i.e., the more similar neuronal activity in two different types of trials was in a given spatial bin, the

smaller the Dissimilarity between their tuning curves in a given spatial bin was. Based on the minimum Dissimilarity, we determined
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the type of trial (context) a neuron’s activity at a given location was the most similar to. Then, a Retrospective – Prospective

bias was defined as (Dissimilarityerror left – correct right; error right – correct left - Dissimilarityerror left – correct left; error right – correct right)/(Dissim-

ilarityerror left – correct right; error right – correct left + Dissimilarityerror left – correct left; error right – correct right). RP-bias = �1 corresponded to fully

retrospective whereas +1 to fully prospective activity. Since this measure was calculated for every spatial bin, it enabled the analysis

of within place field change of past/future choice-influenced activity.

Analysis of past/future-correlated population activity
As demonstrated on Figures S5G–S5K, population vectors (PVs) consisting of firing rate of simultaneously registered stem place cells

were constructed for each spatial bin of the stem. Then, trial type templates were generated by averaging these PVs in each trial type

resulting correct left, right, error left, right templates. These templates were correlated by Spearman rank correlation with PVs in every

trial resulting in a position-resolved correlationmap (Figure S5G small inset). Then, based onmax(R(Position, Trial)) the trial type the tem-

plate of which PV in a given position-trial was correlated with the most was determined generating an inferred context map (Fig-

ure S5H). Finally, this map was compared to the real context the animal was in, and an inferred vs. real context map was created

(Figure S5I). Based on this map, the proportion of trials in which the population exhibited matching, retrospective, prospective or

opposite activity could be calculated for each spatial bin (Figure S5J).

Identification of place cell assemblies
For identifying repeating patterns consisting of co-active neurons within a pre-defined time window, we have implemented the pro-

cedure detailed in Lopes Dos Santos et al. (2013).33 We used theta cycles as time windows (instead of the generally used 25 ms time

bins). First, we had generated theta cycle population vectors and then created a firing rate matrix from these theta cycle PVs. Firing

rate values in this matrix were Z-scored. Next, a correlation matrix was generated by correlating the rows (corresponding to neurons)

of this Z-scored firing rate matrix. Then, principal components of the resulting correlation matrix were calculated and the number of

principal components contributing to up to 70% of explained variance were determined. For the PCA, MATLAB’s built-in ‘‘pca’’ func-

tion was used. The next step was the rearrangements of principal component scores by independent component analysis (ICA). We

utilized the ‘‘fastica’’ algorithm by Hugo Gavert et al. downloaded from https://research.ics.aalto.fi/ica/fastica/. This algorithm can

calculate the PCA but it can also accept pre-calculated eigenvectors. Thus, we generated the eigenvalue decomposition of the cor-

relationmatrix byMATLAB’s Singular Value Decomposition (svg) and fed the resulting eigenvectors and the number of principal com-

ponents contributing to up to 70% of explained variance (determined by PCA, see above) to the fastica algorithm. As a result of ICA,

we obtained vectors of scores (loadings) corresponding to the contribution of each neuron to the identified assembly. For each as-

sembly, we sorted neurons based on the ascending order of scores and kept only those in the highest decile as significantly contrib-

uting neurons. Importantly, we excluded assemblies with less than 7 stem place cell members. We also calculated the reactivation

strength of assemblies by generating the dot product of every pattern and the firing rate matrix consisting of the theta cycle popu-

lation vectors. Finally, we converted theta cycle indices of assemblies (indicating in which theta cycle the given assembly was de-

tected) to position, calculated assembly tuning curves for left and right trials by averaging position-resolved reactivation strength

and determined Dissimilarity for quantifying the difference in reactivation strength between left and right trials.

Position estimation by template matching
For decoding the animal’s position from simultaneously recorded place cells, a template matching approach was used.32 First, pop-

ulation vectors composed of the firing rate of co-registered place cells was generated for every spatial bin in every trial. Three spatial

population vector templates were built for each spatial bin by averaging population vectors from i) 10 randomly chosen trials (non-

selective trials); ii) 5 randomly selected left trials; iii) 5 randomly selected right trials. Next, theta cycle population vectors were con-

structed from firing rates of co-registered place cells for every theta cycle. Every theta cycle population vector was correlated bin-by-

bin with spatial population vector templates using cosine similarity (CS) and the one with the highest CSwas chosen as the estimated

position of the animal. Notably, cosine similarity resulted in better position estimation than Spearman’s rank correlation if the number

of simultaneously registered neurons was low (in continuous sessions) This procedure was repeated for non-selective, left and right

templates. Finally, theta cycles co-occurring with the trials used for template building were removed. Decoding error for every theta

cycle was determined by subtracting the real from the estimated position of the animal. Whether a given theta cycle is non-selective,

left- or right-biased was decided based on the template that resulted in the smallest decoding error.

Identification of putative monosynaptic connections
Cross-correlograms (CCG) were generated from the within-place field spikes of pyramidal cells and simultaneously recorded inter-

neurons using a maximum lag of ±100 ms and 1 ms time bins. To test whether cross-correlated neurons were connected monosyn-

aptically, a hard threshold was set corresponding to the 1.5 times max(CCG[1ms..90ms]). If a peak within 5 ms from the 0th time bin

exceeded this threshold, the two neurons were assumed to be connected monosynaptically. A Monte Carlo simulation was also car-

ried out by calculating crosscorrelograms between pairs of shuffled interneuron and place cell spike trains generated by randomly

shifting spike times by a maximum of ±5 ms and real interneuron spike trains. Shuffling was repeated 1000 times. Significance level

was set to 1% of the shuffled distribution for all bins. Two neurons were categorized as monosynaptically connected pair if a peak

within the [0 ms–5 ms] interval of their CCG exceeded this threshold.37 Finally, the CCGs of the selected significant pairs were
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compared to those obtained by the hard threshold and based on this comparison the hard threshold method was proved to be

stricter and used for identifying putative monosynaptically connected pairs.

Prediction of interneuron spiking by activity of place cells
We attempted to test whether spatial modulation of interneurons activity could be predicted by co-active place cell firing. Predictor

variables were the trial-by-trial smoothed firing rate (from smoothed tuning curves) of all place cells, only putative monosynaptically

connected and non-connected place cells whereas the response variable was the trial-by-trial smoothed firing rate of the inter-

neuron. A robust linear regression model was fitted on the predictor and response variables after range normalization. The root-

mean-square error was calculated as a goodness of fit measure for the model. Additionally, contribution of every potential predictor

(place cell) was quantified by setting its value to a constant and comparing the resulting model to the full model (a ‘‘leave-one-out’’

strategy). Additionally, Selectivity of interneuron firing was also attempted to be estimated by the Selectivity of co-registered pyra-

midal cells by using the above-detailed methods. This analysis was performed by MATLAB’s ‘‘fitlm’’ function.

QUANTIFICATION AND STATISTICAL ANALYSIS

In most of the cases median and interquartile range were given and box and whisker plots with outliers were plotted.

Average ±standard deviation was provided where specified. For comparing unpaired data, Wilcoxon’s rank-sum test was

used. *: 0.01 < p < 0.05; **: 0.001 < p 0.01; ***p < 0.001. Comparison of multiple groups was done by Kruskall-Wallis ANOVA followed

by Tukey-Kramer honest significant difference test. Details about more complex statistical models are given above in the respective

STAR Methods section. Description of statistics can be found in figure legends except in few instances specified in the Results. All

statistical tests were carried out using built-in MATLAB functions.
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