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M Check for updates

Although the generation of movements is afundamental function of the nervous
system, the underlying neural principles remain unclear. As flexor and extensor
muscle activities alternate during rhythmic movements such as walking, it is often

assumed that the responsible neural circuitry is similarly exhibiting alternating
activity'. Here we present ensemble recordings of neurons in the lumbar spinal cord
thatindicate that, rather than alternating, the populationis performing a low-
dimensional ‘rotation’ in neural space, in which the neural activity is cycling through
all phases continuously during the rhythmic behaviour. The radius of rotation
correlates with the intended muscle force, and a perturbation of the low-dimensional
trajectory can modify the motor behaviour. As existing models of spinal motor
control do not offer an adequate explanation of rotation'?, we propose a theory of
neural generation of movements from which this and other unresolved issues, such as
speed regulation, force control and multifunctionalism, are readily explained.

The neural circuitry behind movement encompasses several distinct
forebrainregions, the cerebellum and the brainstem. The core execu-
tive circuits for movement such aslocomotion, however, reside inthe
spinal cord®. These spinal motor circuits, often referred to as central
pattern generators (CPGs), are capable of autonomous generation of
rhythmic coordination of muscles. Although great progress has been
made in characterizing the cellular properties of spinal interneurons
and motor neurons, including their genetic lineages*?, the detailed
network architecture and the associated neuronal ensemble dynamics
remain elusive. Owing to the apparent right-left and flexor-extensor
alternation, it has often been proposed that distinct groups of interneu-
rons, or ‘modules’, are activein a push-pull fashion and that the rhythm
is ensured by cellular pacemaker properties'?. It is unknown whether
and how such organization and different motor programs are mani-
fested in ensemble activity of spinal networks.

Rotation in spinal motor circuits

Here we examined the activity in spinal motor networks using extra-
cellular multi-electrode recording in the turtle lumbar spinal cord.
This preparation provided mechanical stability, which allowed simul-
taneous monitoring of large numbers of spinal interneuronsinlaminae
VII-VIlIl and motor neurons during the execution of various rhythmic
motor programs®®, The firing rate of individual neurons was close to
sinusoidal (Extended DataFig.1) and, asexpected, rhythmicinrelation
tothenerves, but the population activity as awhole seemed incompre-
hensible (Fig. 1a,b). However, when sorting these neurons according
to the phase of the motor nerve output, we found that the population
activity resembled a continuous sequence, which covered all phases
of the cycle (Fig. 1c). To better understand the sequential activity, we
performed aprincipal componentanalysis of both the neuronal popula-
tionand the nerve activity. Both the neuronal activity and the six motor

nerves followed a low-dimensional manifold (that is, most variance
was explained by few components; Fig.1d). Whereas the nerve activity
seemed entangled, the neuronal activity had asimple rotation (Fig. 1e,f).
Rotational population activity was independent of the sorting,
and it was observed in all trials and across animals (Extended Data
Figs.1and 2 and Supplementary Video 1). To quantify this distinction
further, we applied a previously defined metric?, which quantifies the
‘tangling’ of neural trajectories (that s, the degree to which points along
thetrajectory are close to each other, but move in different directions).
We found the tangling to be larger for the muscle trajectories than the
neuronal trajectories most of the time (>96.3%), which was consistent
across datasets (Extended Data Fig. 3). As the tangling for rotational
trajectories is lower than for trajectories with points that are close to
eachother and movingin the opposite direction, as would be the case
foralternating activity (Extended Data Fig. 3a), these data are consist-
ent with a neuronal population that is executing a rotation. There did
notseemto beany discrete phase preference as otherwise expectedin
analternating modular network (Extended Data Figs.1-3). Rotational
dynamics has been observed in the motor cortex and elsewhere'® ™,
but it has not been described for spinal circuits previously. Neverthe-
less, indications canbe found as wide phase distributionsin the scarce
literature on spinal population recordings®*™.

Theory to explainrotation

As conventional CPG theories, whichare founded on a push-pull organi-
zation with intrinsically rhythmic modules'®”, do not readily explain
rotational dynamics, we sought to explore a theory that can account
for thisand other open questionsin spinal motor control. In particular,
the mechanisms for generation of rhythms have remained nebulous.
Cellular pacemaker properties have been suggested', but decades
of research have not been able to pinpoint a responsible cell type".
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Fig.1|Neuronal populationactivity in the lumbar spinal cord has
rotational dynamics. a, The activities of three selected motor nerves
(electroneurogram) during rhythmic hindlimb scratching movement.

b, Concurrentensemble activity of spinal neuronsin the turtle lumbar spinal
cordasaraster plot (top, n=214) and estimated firing rates (bottom). ¢, Sorting
theneuronsinbaccordingto phase (hip flexor) reveals sequential activity.

Here we propose that the rhythm arises as anetwork oscillation rather
thanthrough cellular properties. It is wellknown that anetwork that is
closetothetransition point of dynamicalinstability can have rhythmo-
genic properties without requiring specific cellular properties’s.
As the CPG network structure is unknown, we assumed a structure in
which glutamatergic neurons were randomly and recurrently con-
nected. To prevent catastrophic runaway activity'?, the excitation (E)
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d, Thefirst PCs explain most variance of electroneurogramactivity (green)
and neuronal ensemble activity (grey).e,f, The first two PCs of nerve activity
(e) and neuronal population (f). Tangling of the nerve activity was higher than
that of the network 96% of the time. One out of ten samples shown. Similar
experimentsrepeatedin fiveindependent datasessions (four animals) witha
total of 28 trials of one behaviour.

was balanced by recurrent glycinergic inhibition (I) (Fig. 2a,b), in line
withreports of balanced synaptic input in various motor circuits? 2,
Balanced networks of this type are known to undergo a phase transi-
tion when synaptic weights are increased beyond a critical value?*?.
For large networks, activity in this regime is chaotic?, whereas
finite-sized networks in adynamical regime close to the transition point
may exhibit more regular activity?. A linearization of the dynamics
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Fig.2|Rotational dynamics emergesinthe BSG model.a, The BSG model.
Aninputdriveactivates arecurrent network with excitatory (blue) and
inhibitory (red) neurons. The network canreceive both synapticinputand
gainmodulation. A subset of cells provides motor output. b, The connectivity
matrix has 50% excitationand inhibition. ¢,d, Thefiring rateisincreased by
synapticinput (bottomarrow; ¢), causing the eigenvalue spectrum to expand
(purpleversus grey, d) and cross the stability line (dashed red line, d) and thus
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generate anetwork oscillation. A gain modulation resultsinachangein slope
(bluelineand arrow, c). e, Input (top) and firing rates of five neurons (bottom).
f,Sequential activity revealed by sorting according to phase, similar to
experiments. g, Projection of the population firing rates on the two first PCs
revealsarotation. h, The model nerve output displays alternating activity.

i, Flexor and extensor nerves are innervated by antiphase excitatory neuronsin
the strongest eigenmode (blue and grey, respectively).
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Fig.3|Network control ofamplitudein the BSGmodel. a,b, Increasingthe
common gaininthe network (A-C; a) ramps up ensemble activity (b, top) and
nerve output (b, bottom). ¢, Higher firing rates are associated with alarger
radius of rotationin PC space (colour-matched with levels A-C).d, Correlation
ofradius (right) and gain (left) with nerve output. e,f, Experimental verification

close to this point (see the mathematical note in the Supplementary
Information) demonstrates that finitely sized networks can generate
oscillatory activity if the leading eigenvalue of the connectivity matrix
has a nonzero imaginary part”. On the basis of thisidea, we setup a
model network of rate-based neurons with sparse connectivity for
which an external input, in the form of a synaptic drive (for example,
sensory related or descending from the brain), could move the eigen-
values of the connectivity matrix across the stability line owing to a
changein the set point of the firing-rate function (Fig. 2c,d). A second
type of input that modulates the gain of individual neurons?® was also
included to provide amechanism to modify the network state. As the
network received a sustained synapticinput, some of the eigenvalues
moved beyondacritical level (red dashed line), which caused firing rates
in the network to exhibit self-sustained rhythmic activity (Fig. 2d,e).
Whensorting the neurons according to phase, asequential activity was
revealed (thatis, arotation), similar to the experimental observations
(Fig. 2f,g). We refer to a network in this state as a balanced sequence
generator (BSG). Both the BSG model and the experimentally observed
rotation are fundamentally different from conventional models, which
are founded on alternation with the neurons having clustered phase
preferences and belonging to modules composed exclusively of either
excitatory orinhibitory neurons.

To model the output nerve activity from the BSG model, we con-
nected asubset of neurons on the basis of their phase in the dominant
eigenmode to pools of motor neuronsto provide the appropriate nerve
activity. This resulted in an alternating nerve output resembling the
experimental observations (Fig. 2h,i and Supplementary Video 2).
Next weinvestigated the activity of the excitatory and inhibitory popu-
lations during the motor program in the BSG model. We found that
both the E and I populations themselves exhibit similar sequences as
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through trials1-3 with different nerve outputs and radii (f, colour-matched).
g,Nerveamplitude (r.m.s. + s.e. of six nerves) versus radius of rotation (r.m.s. of
PCland PC2); one-sided Wilcoxon test (*P=0.016); linear regression, **P< 0.01,
F-statistics, null hypothesis of zero correlation.

the combined population activity (Extended Data Fig. 4). These results
demonstrate that rotational dynamics can arise in simple networks
without fine-tuning of parameters and result in an alternating nerve
output, inline with our experimental findings (Supplementary Video 2).
Although proprioceptive feedback from muscles and their reflexive
circuitry was not included in the BSG model, we expect this feedback
toimprove the performance by stabilizing the rhythmic activity.

Control offorce and period

Next we evaluated whether the BSG model could explain previously
unsolved issues, such as independent control of force and speed of
the movement. The ability to modulate the strength of the output and
speed s key for volitional control but, to our knowledge, no mechanism
hasbeen proposed for controlling these independently. To investigate
these aspectsinthe model, we used gain modulation (that s, the slope;
Fig.2c) of the neuronal firing-rate function around the working point
set by the external input®, First, we found that collective (uniform)
modulation of the gain by aninput drive could indeed control the ampli-
tude in the BSG model (Fig. 3a—c). As the amplitude increased, so did
theradius of rotation, whereas the frequency and sequence remained
largely unaltered (Extended DataFig. 5). To verify this prediction experi-
mentally, weinspected trials that, owing to aninherent variability, had
various radii of rotation (Fig.3e and Extended Data Fig. 1f). Theradius
of rotation had substantial correlation with the motor nerve activity
(Fig. 3f,g and Extended Data Fig. 6), in line with the predictions from
the BSG model and the proposed mechanism for amplitude control.
Next we explored whether the BSG model could control the period of
therhythm and thereby the speed of movement execution. Rather than
collectively adjusting the neuronal gain of all neurons in the network,
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Fig.4 |Modulation of periodin the BSG model. a, Adjusting the neuronal gain
to change the rhythm by moving the eigenvalue up or down (green arrows).

b, Capacity to modulate the rhythm by anindividual neuronis assessed by
changingits gain. Ranking neurons accordingly reveals brake and speed cells.
c,d, Whenactivating brake cells whileimpeding speed cells (gain profile, top
left), therhythmis slowed down (c) compared with neutral (d). Middle, sorted
ensembleactivity; bottom, nerve output. Theradius of rotationis largely

we found that selective gain modulation of a subset of neurons could
alter the frequency of the population activity without affecting the
amplitude (Fig. 4). Individual gain modulation is a powerful tool in
network control®, and here we systematically tuned the neuronal gain
to identify a subset of neurons that had most influence on the period
(Fig. 4a-f). Some neurons had a strong positive or negative effect,
which we call brake and speed cells, respectively, whereas others had
minor effects onthe rhythm. There were bothinhibitory and excitatory
neurons among both the speed and brake cells (Fig. 4g,h). Interest-
ingly, cellswithaspeed-modulating capacity have been demonstrated
experimentally?*°. However, as both excitatory and inhibitory neurons
were found among the brake and speed cell categories in our model,
an experimentally testable predication would be that also inhibitory
neurons can have similar speed-modulating effects. The modulation
capacity of individual neurons in the modelis not due to their cellular
properties, butrather their specific location in the network structure.
A possible link between the network location, cell identity and speed
control remains to be assessed.

Multiple motor programs

The ability to execute multiple motor behaviours (that is, amultifunc-
tional output) is the hallmark of the motor system®2, Although cortical
network models have already been demonstrated to generate mul-
tifunctional output®?*, contriving a model within the conventional
framework of spinal motor circuits that can accommodate the rich
repertoire of behaviours has so far been a major challenge. Here we
focused on two well-known motor behaviours in the turtle and inves-
tigated these both experimentally and in the model. These behaviours
consist of hindlimb movements, in which either the kneeis protracted
while moving the footin small circles (pocket scratching) or the footis
protracted while thelegis stretched (rostral scratching). We reasoned
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unchanged (PCs top right), indicating a similar amplitude of motor output.

e, Reversed activationresultsinafaster rhythm (0.9 Hz). f, Gradually modulating
thespeed and brake cells (inset) can either decrease orincrease the frequency.
g, The capacity to modulate the rhythm has abell-shaped distribution. Brake
and speed cells represent cells with strong modulation capacity, inwhich both
excitatory andinhibitory cellsare found.n=200. h, Modulating only excitatory
(grey) orinhibitory (orange) cellsis sufficient to change the frequency.

that this multifunctional activity is caused by a perturbation of the
rotational dynamics that in turn switches the phases of the resulting
motor nerve outputs. To test this ideain the BSG model, we identified
two subsets of neurons for which two distinct sets of gain modulation
(gainprofiles, Fig.5a,b and Supplementary Video 3) caused amoderate
changeinthe phase preference ofindividual neurons. A comparison of
the resulting neuronal phase preferences between the two behaviours
indicated that many of the neurons kept their timing in the sequence
(Fig. 5f,g). We then optimized a set of readout weights to drive motor
nerve activity that caused a phase shift of the hip angle between the
two behaviours (Fig. 5c). Inthe resulting simulation, the nerve output
of behaviour 1had knee and hip extensors in phase (‘no shift’, Fig. 5d),
whereas the second input pattern caused the phase of the hip extensor
(and flexor) to change inrelation to that of the knee extensor (Fig. 5e).
Despite the marginal visual differencesin population activity between
the two behaviours (compare Fig. 5d,e and Supplementary Video 3), the
network generated markedly different motor outputs. Using principal
component analysis, we found that the switch between behaviours
was associated with a change of the low-dimensional subspace of the
rotational dynamics. When projecting the population activity of behav-
iour 2 onto the principal components (PCs) for behaviour 1 (red), the
rotational dynamics had a smaller variance compared to the variance
of behaviour 1 (black; Fig. 5h). However, a comparison with the vari-
ance of the projection of the ‘native’ PCs of behaviour 2 (not shown)
showed that this was not due to amarkedly lower variance of behaviour
2 compared to behaviour1, but instead that a fraction of the variance
wasinanother subspace. By computing the ratio between the variance
explained in these two subspaces®, we quantified the subspace over-
lap between the two behaviours to be 0.49. These model results were
qualitatively similar to the experimental data, in which the sequential
activation, although notidentical, remained during the two behaviours
(Fig. 5i-m). The subspace overlap here was 0.34 (Fig. 5m). A similar
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Fig.5|Two motor programs in model and experiment. a, Hindlimb
movement is quantified using the hip and knee angles. b, Two distinct motor
behaviours (pocket and rostral scratching) are evoked in the BSG model by
distinct gain profiles (left) of neuronal subsets. HE, hip extensor; KF, knee
flexor. c, The evoked motor patterns (top: pocket; bottom: rostral) translated
tolimbtrajectory (left, brown) and joint angles (right, hip and knee). d-h, Model
results.d,e, Theensemble activities associated with behaviour1(d) and
behaviour2 (e) are notidentical, but resemble one another, although their
motor patterns are qualitatively distinct (‘no shift’ versus ‘shift’in the shaded

trend was seen across trials, behaviours and datasets (Extended Data
Fig.7).Finally, we tested whether other distinct motor patterns could
be evoked in the BSG model. A plethora of patterns or ‘gaits’ could
be induced through different gain profiles, with a similar diversity
to that of real motor patterns (Extended Data Fig. 8). This suggests
thatactivating a spinal network to generate a desired motor patternin
general translates to finding the appropriate combination of neurons
tomodulate (for example, by trial-and-error-based motor learning)®.

Discussion

We have presented evidence that, rather than exhibiting alternat-
ing activity, the spinal network behind rhythmic movement exhibits
low-dimensional dynamics that can be described as a rotation in neural
space. During motor programs, the activity of the spinal population
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regions). f, Phase (¢) of neuronsinbehaviour1versus behaviour 2 with respect
to hip flexor scatter around the unity line, shown as +45°. g, Polar histogram of
the phase difference (Ag). The orange lineindicates +45°. h, Projection of
behaviour1(black) and behaviour 2 (red) on the PCs of behaviour 1. Projection
of behaviour 2 (red) onto the subspace of behaviour1had an overlap of 0.49
compared toits native representation® using three PCs. i-m, Experimental
resultsinasimilararrangementto thatind-h and similar motor behaviours.
Projection of behaviour 2 (red) onto the subspace of behaviour 1had an overlap
of 0.34 compared toits native representation. a, Graphic adapted from ref. *.

continuously cycles through all phases, whereas the resulting nerve
activity is alternating (Fig.1). Using computational modelling, we have
shown that the core function of a spinal CPG (that is, to convertacon-
stant input to a rhythmic motor output) can be achieved by a simple
balanced network that undergoes a transition to an oscillatory state.
The alternating nerve activity is then obtained by a readout from cer-
tain phases of the rotational population activity (Fig. 2). This model
stands in contrast to conventional CPG theories that rely on cellular
properties for rhythm generation and amodular hierarchy for pattern
generation'?,

Itisimportant to note that our theory of rotation does not exclude
therole of specific cell types* (for example, for left-right coordination
orspeed control?**°) and that cell-type-specific connectivity could be
included in the model to obtainatheoretical understanding of its effect
ontheresulting neural dynamics®. Similarly, the role of intrinsic cellular
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properties (for example, nonlinear adaptation) could be included to
elucidate their role in shaping network oscillations”. However, as there
is rich diversity among spinal interneurons (with, for instance, more
than 50 subsets of the GABAergic interneuron®), inclusion of only
partial cell-type mappings is unlikely to offer better insight into the
dynamical properties of the network. Such complexity is not necessary
to explain rotational dynamics.

The BSG model has all phases represented evenlyin the population,
whichisaresult of the simplified random connectivity (Fig. 2b). Skewed
phase representation could be achieved by including more structured
connectivity, such as variable degrees of convergence and divergence
while keeping the E/I balance. The random connectivity in our model
was chosen as the most parsimonious structure in the absence of an
experimentally derived core CPG connectome. However, the mecha-
nismwe propose to be behind the rotational dynamics could be foundin
other types of network architecture. Random connectivity is therefore
not arequirement for our theory of rotational dynamics.

This theory also explains ‘deletions’, during which nerve bursts are
missing whereas the overall rhythmic pattern continues (Extended Data
Fig.9). Depending on the exact readout direction (which would prob-
ablyinvolve PCs beyondthefirst three), even arelatively modest change
inthe population trajectory could cause a large change (for example,
adeletion) inthe readout (Extended DataFig.10). Thissuggests thata
separation of spinal rhythm- and pattern-generating layers, as previ-
ously proposed?, is not necessary to account for deletions.

The ability to generate multiple movement patterns has already
been studied for cortical networks??%*3** but the issue of multifunc-
tionality in spinal motor networks has remained an open question.
Inour model, we explored amechanismto generate multiple rhythmic
motor patterns in the same spinal network by gain modulation of a
subset of neurons in the network. Such subset modulation could be
accomplished by cellular nodes that distribute sparseinputtoalarger
population, as has been observed for spinal motor synergy encoders*.

Our theory could also be extended to account for non-rhythmic
sequences by using abriefand targeted input drive, hence generating
asingle cycle of neural rotation, sculpted by selective gain modulation
inthe spinal network through descending commands from the brain.
This could provide animportant link between the motor circuits for
rhythmic movement and those for non-rhythmic sequences, whichis
missing at present.
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Methods

In this Methods section, we describe the experimental protocols and
the details of our computational modelling. The experimental data
have been used in a previous study for a different purpose’.

Experimental methods

The surgical procedures comply with Danish legislation and were
approvedbythecontrollingbody (The Animal ExperimentsInspectorate)
under the Ministry of Food, Agriculture and Fisheries of Denmark
(permission number 2018-15-0201-01504). Methods have previously
been published in detail”®*. In brief, successful experiments on four
adult (approximately 5 years of age) red-eared turtles (Trachemys
scripta elegans), ordered from Nasco (https://www.enasco.com/), of
bothsexes formed the basis of this study. One of the animals was used
twice on different days, resultingin a total of five datasets. The animal
was placed on crushed ice for 2 h to ensure hypothermic anaesthesia*,
then killed by decapitation, and its blood was substituted by perfu-
sionwith aRinger solution containing 120 mM NaCl, 5 mMKCI, 15 mM
NaHCO; 2 mM MgCl,, 3 mM CaCl,and 20 mM glucose, saturated with
98% 0,and 2% CO, to obtain pH 7.6. The carapace containing the D4-S2
spinal cord segments was isolated by transverse cuts, and the cord
was perfused with Ringer’s solution through the vertebral foramen,
by means of a steel tube and silicone gasket pressing against the D4
vertebra. The motor nerves were cut to measure their activity and
increase mechanical stability by preventing movements of the limbs.
The preparationwas placed onthe back and fixed withglueina cham-
ber with a constant flow of oxygenated Ringer’s solution to keep the
cord submerged and the skin tissue moist*. The vertebrae (D8-D10)
corresponding to the lumbar segments L2-L5 in mammals** were care-
fully opened on the ventral side to allow access to the spinal cord for
insertion of the multi-electrode arrays. We opened the spinal column
on the ventral side along segments D8-D10 and gently removed the
dura mater with a fine scalpel and forceps. For each insertion site of
the multi-electrode arrays, the pia mater was opened with longitudi-
nal cuts along the spinal cord with the tip of a bent syringe needle tip
(BD Microlance 3:27G 3/4 in, 0.4 x 19 mm). The cuts were made in
parallel in the ventral horn between the ventral roots. Blinding and
randomization of the data collection was not applicable in this study.

Electrophysiology

Tomonitor the rhythmicactivity and motor programstate, electroneu-
rogramrecordings were performed using suction electrodes onthe hip
flexor, knee extensor and dD8 nerves*® (thatis, a total of six motor nerves
(three from each side) at the level of the D9-D10 vertebrae). The elec-
troneurograms were recorded with a differential amplifier (Iso-DAMS,
World Precision Instruments) with the filter bandwidth at 300 Hz to
1kHz, and sampled at 20 kHz with a 12-bit analog-to-digital converter
(Digidata 1200, Axon Instruments), displayed by means of Axoscope
and Clampex software (Axon Instruments). Custom-designed silicon
probeswereinsertedinto the lumbar spinal cord (D8, D9 and D10) inthe
anterior-posterior direction to minimize damage to the white matter
fibre tracks. These segments correspond to the lumbar (L2-L5) spinal
cord in mammals*2. Up to four 64-channel silicon probes (that is, 256
recording sites) wereinserted (Berg64 from NeuroNexus). The probes
had eight shanks and eight recording sites on each shank arranged in
astaggered configuration with 30 pm vertical distance. The shanks
had a thickness of 15 pm and were spaced 200 pm apart. Recordings
were performed in parallel at 40 kHz using a 256-channel multiplexed
amplifier (KJE-1001, Amplipex) to acquire the extracellular potentials
of alarge number of neurons, for post hoc polytrode spike sorting.

Motor network activation by cutaneous sensory input
Eachscratchepisode lasted approximately 20 s. Anew trial was initiated
aftera5-minrest. Toreproducibly activate the scratching motor pattern,

alinear actuator was applied to provide mechanical touch on the skin
around the legs meeting the carapace. The somatic touch was controlled
by a function generator (TT2000, Thurlby Thandar Instruments) and
consisted of a10-s-long sinusoidal movement (1-2 Hz). The touch was
applied on the border of the carapace marginal shields M9-M10 and
the soft tissue surrounding the hindlimb, which s the receptive field for
inducing the pocket scratching motor pattern. Pocket scratching was
elicited oneither theright or the left side on the soft tissue surrounding
the hindlimb representing two distinct behaviours. Further, the rostral
scratching behaviour was elicited by similar touching of the carapace
in the more rostral location on the shields. For reviews on the various
motor patterns and the cutaneous activation, see refs. 3*,

Five experimental datasets that fulfilled the requirements of both
successful recording fromlarge numbers of neurons, six motor nerve
recordings, and activation of distinct motor behaviours were acquired.
A summary of the parameters is shown in Supplementary Table 1.
The electrode depths are indicated with respect to the ventral side,
which puts the electrode arrays in Rexed laminae VII-VIII, where the
motor-related interneurons are located.

Data analysis

All data analysis was performed in custom-designed procedures in
Matlab (Mathworks, R2020b) or Python (https://www.python.org).
Spike sorting was performed using KlustaKwik*. Spike rates were esti-
mated by convolving the neuronal spike times with a Gaussian kernel
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in which 0 =250 ms, to capture the slow modulation of the firing
rate. The firing rates were further high-pass filtered with a three-pole
Butterworth filter usinga zero-phase filter (filtfilt.m) functionin Matlab,
witha cutofffrequency of 0.3 Hz. To better visualize the phase of neu-
ronal activity, the firing rate amplitude was normalized to unity and the
mean was subtracted. The nerve activity was rectified and band-pass
filtered from 0.2 to 5 Hz. This data filtering was performed on all of
the data except the data involved in linear decoding, for which the
slow components are animportant elementin the translation between
population spiking and the nerve output.

Principal component analysis. Principal component analysis (PCA) of
the multidimensional population firing rates was performed on the
firing rate space (neural space). The principal components U, were
determined as eigenvectors of the empirical covariance matrix C of
thenfiring rate traces, with the eigenvalues A, representing the absolute
amount of variance in the data that each component can account for.
The eigenvectors and eigenvalues were found through

Cu=Uz

inwhichU=[U,, U,,..., U,]Jcontains the PCs (eigenvectors) U, and

A0
=l -
0o A,

The PCA was performed in Matlab using the function PCA.m.
A similar PC analysis was performed on the nerve activity, although
these were only six-dimensional data (Fig. 1). The neuronal population
activity plotted in PC space as a function of time was achieved by
projecting the population vector, r(¢) = [r(¢), ..., r,(t)1(thatis, a vector
with the firing rates of all neurons), onto the PCs, giving the population
vector in new coordinates, r'(t):

r'()=r(t)U
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Subspace overlap analysis. A method for quantifying to what
extent a PC subspace of one behaviour overlaps that of a different
behaviour has been introduced previously*. To quantify the overlap
between the low-dimensional subspaces of two different behaviours,
we first computed the PCs of the two behaviours separately using PCA
(see above). We then selected the first three PCs as their respective
subspace. The overlap between subspaces was then calculated as the
total variance captured by a projection of the first behaviour on the
PCs of the other behaviour, divided by the variance captured by the
projectionontoits ‘native’ PCs*. We used the first three PC dimensions
for this quantification in both experiments and model simulations
(Fig.5and Extended DataFig. 7).

Sorting of units according to motor phase. The firing rate of units
was sorted according to motor phase through two steps. First, the
frequency of rhythmic activity was identified by estimating the peak
inthe power spectrum of arepresentative nerve. For this purpose, the
nerve activity was rectified and smoothed and subsampled to have the
same sampling rate as the estimated firing rates. Second, the magnitude
and phase of the coherence Coh, between this nerve activity and the
firing rate of the ith neuron was estimated through*®
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in which kis the number of multi-taper spectral estimates (k=4).R;
and N;are the individual spectral estimates using the discrete Fourier
transform of the tapered firing rate of the ith neuron, r(t), and the
rectified and low-pass-filtered nerve trace n(t):

Coh;(f) =

.
Ri(f) =Y e r(t)w(e)

t=0
T ..
N(f) =Y e/ (w0
t=0

andw(¢) isthejthtaper function, the discrete prolate spheroidal (Slepian)
sequences’. These taper functions and the Fourier transforms were
calculated using the Matlab functions dpss.mand fft.m. The power spec-
tra of the firing rate of the ith neuron and the nerve were calculated
asS2, =1 ¥\ R;R5and S2,,,. = 1 ¥/-{ N;N% inwhichtheasterisksindi-
cateacomplex conjugate. The phase of the ithneuron was chosen from
Coh,(f) at the frequency for which the strongest peakin 52, was found,
whichwastherhythmofthe motor pattern. Onthebasis of the phase, the

neurons were sorted and their activity was plotted (for example, Fig. 1c).

Nerve activity measures. In some of the analysis, the motor output
was measured as electroneurograms quantified using the root mean
square (r.m.s.) of the traces after smoothing using the Savitzky-Golay
finiteimpulse response filter. Ther.m.s. of the electroneurograms are:

1
ENG; 5. = \/m

inwhich x;, x,, ..., x,, are the electroneurogram (ENG) measurements
and nis the number of samples. The r.m.s. values were calculated in
Matlab using the procedure rms.m. The meanvalues reported (Fig. 3g)
are the average of all six nerves. The error bars are the standard error
ofthe means (that is, the standard deviation divided by /6). A pairwise
statistical comparison was performed between trials, each having six
measurements (the nerves), using the non-parametric Wilcoxon signed
rank test through the procedure singrank.min Matlab.

The relationship between the radius of PC rotation (r.m.s. of the
first two components) and nerve output (r.m.s.) was verified using an
F-statistic versus a constant model. The test statistic for the F-test on
theregression model (Extended Data Fig. 6g,h) isatest of whether the
linear fit is significantly better than a constant.

Nerve output prediction using a linear decoder. Linear decoding of
neural ensembles (for example, in the primary motor cortex) hasbeen
used efficiently to control prosthetic devices using abrain-computer
interface for individuals with tetraplegic conditions***°. Theideais to
use alinear filter, f (that is, alinear decoder), that can translate the fir-
ing rates of a population of neurons, written asamatrix R=r(t) overa
time period, toareadout to control aset of muscles, N, suchthat N=Rf.
Thefilter is first constructed from training data that describe the as-
sociation between the firing rate matrix R and the nerve output matrix
N (Extended Data Fig. 10). The filter was estimated using the least-
squares formulation from a closed-form expression®®:

f=(R™R)'R'N

In this study, we form a prediction of the nerve output based onthe
linear decoding of the neuronal population activity in the spinal cord,
for theintention of verifying how well a population measure can predict
the output. Thisis relevant for the investigation of deletions. The pre-
diction of deletions purely from the sampled population activity can
giveinsightinto whether there are several layers in the motor network
(thatis, separation of rhythmand patterngeneration), which has previ-
ously been proposed to explain non-resetting deletions in decerebrated
cats and spinal cords isolated from neonatal rodents>* 2,

Trajectory tangling metric of neuronal population and nerve activity.
The degree of tangling of the trajectories in neural space compared
with that of the motor nerve trajectories has recently been quantified
by a new metric®**. We use this metric to quantify trajectory tangling
in this study (Extended Data Fig. 3). In brief, the metric is the point in
the multidimensional state space r(¢), which can represent either the
population firing rate or the activity of the group of motor nerves (six
in our case), or the PCs thereof. The tangling, Q(¢t), is defined as the
maximum squared Euclidean difference in velocity of the movement
alongthetrajectory at two pointsintime, tand ¢/, ¢'(¢) - r'(¢'), divided
by the Euclidean distance between the points squared:
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This fractionis a basic measure of how different the velocity (speed
and direction) is between two points on the curve divided by how far
they are from each other. The unit of Qis s If the trajectory is very
tangled, there will be points that have different directions and are close
toeach other. Parts of the trajectory with low tangling will tend to move
inthesamedirectionifthey are close to eachother. eisasmall constant
added to avoid division by zero. The value of € is not important if it is
small compared with the scale of the data. Similarly, the scale of the data
should not affect the tangling metric if it is large compared with €. As
we are comparing firing rates and ENG nerve recording, which differ by
several orders of magnitude, we scaled e by the r.m.s. of the first PC. The
derivative was estimated as the difference in r between neighbouring
samples and divided by the sampling time. As this method tends to
enhance noise, we first smoothed the trace with a kernel (500 point,
Savitzky-Golay of second degree). We calculated the tangling of the
firstthree PCs of firing rates of the neuronal population and compared
itwith the tangling of the first three components of the six-dimensional
nerve activity. We used the fraction of time points for which the tan-
gling was higher for the nerves than for the network as a composite
measure to compare across trials and animals (Extended Data Fig. 3).



Statistics and reproducibility

ForFig.1, datawere acquired in tenindependent trials for that animal
(eight trials shownin Extended Data Fig.1). Similar measurements were
performed over five independent data sessions (four animals) with a
total of 28 trials of one behaviour (Extended Data Fig. 2). For Fig. 3, data
were acquired in five independent data sessions (four animals) with
atotal of 49 trials. See also Extended Data Fig. 7. For Fig. 5, data were
acquiredin five independent data sessions (four animals) with a total
of 49 trials. See also Extended Data Fig. 7.

BSG network model
The model consists of a network of interneurons and two or more
nerve readouts that represent the motor commands resulting from
the network activity.

Interneuron network. The interneuron network consists of N=200
neurons, of which half are excitatory and halfare inhibitory. We model
the activity of an example neuron i as a firing rate rlg(o), Vi(o)] that
dependsonanactivity variable V,(t), analogous to amembrane poten-
tial, and a gain variable gi(¢). We use a similar function to that used in
previously published model®® adjusted to avoid negative firing rates:

( V)— V.(1- tanh[g(V-V)/V,]), for V<V,
" Y)= Y vy tanh[g(V- V)V, for V>V,

inwhichV, represents the input level at which the slope of the firing
rate function has its maximum (resulting in an output firing rate of
r=V.(Hz)) and V,,,is the maximum deviation (in terms of firing rates)
fromV,.HerewesetV,=20and V,,,, =50, resulting ina maximum firing
rate of 70 Hz. The dynamics of the network is determined by

VA0 ==VA&) + 3. Wyr [g,(0), VO] +1(0)
J

inwhich7=50 msisatime constantrepresenting the combined mem-
brane and synaptic timescale, Wis amatrix that describes the network
connectivity (see below), and/.(¢) is atime-varying external drive that
consists of aconstantinputand anoise term/,(t) = /(¢) + v,inwhichthe
noise termvis Gaussian noise with zero mean and astandard deviation
of 4. The network thus receives two types of external input: acommon
external input (‘drive’) /. thatis used to cause a transition from a quiet
state toanactive rhythmicstate (Fig.2), and aninput that sets the gain
g;of individual neurons that is used to modulate the network activity
interms of amplitude (Fig. 3), frequency (Fig. 4) or for multifunctional
behaviour (Fig.5). For simplicity we used a constantinputdrive/, =20
when studying the effects of gain modulation in the network.

Network connectivity. The connectivity of the network is assumed to
be sparse® witha pairwise connection probability C = 0.1. The synaptic
weightsinthe network are assumed to be balanced; that is, excitatory
(positive) weights, w,,, are equal in magnitude to inhibitory (negative)
ones, w;,. To ensure that the incoming connections are balanced for
each neuron, we construct the connectivity matrix W as follows. We
start with a matrix in which all elements are zero. For each neuron, we
then select CN/2 presynaptic excitatory neurons and assign them the
weight w,.,and CN/2 presynapticinhibitory neurons and assign themthe
weight w;,. In this way, we ensure that the network is both globally and
locally balanced® (that is, the incoming synaptic weights are balanced
for each neuron). The synaptic weights are set according to

a 1

Y= INC-0)

with wy, = -w,, (ref.). This results in a connectivity matrix Wwith a
spectral radius of 1 (Fig. 2d); that is, the largest eigenvalue A,,,,,=10n
average over network realizations. The dynamical stability of the net-
work dynamics is determined by the external input /., the network
connectivity Wand the gain parameter g and can be analysed using
linear stability analysis of the effective connectivity matrix gl (see the
mathematical notein the Supplementary Information). A unity spectral
radius of the connectivity matrix combined with a uniform gaing=1
results in a network that is on the edge of instability. As a default, we
setg=1.2resultinginalinearly unstable network. Furthermore, as not
allrandomly connected networks are expected to generate oscillations
(see the mathematical note in the Supplementary Information), here
we selected only connectivity matrices for which the largest eigenvalue
Amax had @anonzero imaginary part.

Gain modaulation for amplitude control. To control the amplitude
of oscillations in the network model, we adjusted the gain parameter
guniformly for all neurons in the network. As a larger neuronal gain
results in alarger firing rate for the same synaptic input, the overall
amplitude of the oscillatory activity can be expected to increase as the
neuronal gainisincreased in the network.

Gain modulation for frequency control: speed and brake cells.
To control the frequency of oscillations in the network, we adjusted
the gain g;individually for selected neurons in the network. A simple
procedure was set up to estimate the influence of each neuron on the
overall frequency. The gain g;was increased and decreased by a small
amount, and the spectrum of the effective connectivity matrix g was
calculated (Fig. 4a). Depending on whether thatimaginary part of the
largest eigenvalue A,,,,, wasincreased or decreased (corresponding to
anexpectedincreased or decreased oscillation frequency), we assigned
the neuronarank depending onits frequency modulation capacity. A
positive modulation capacity meansthatanincreaseingainor drive to
that neuron will increase the frequency of the rhythm, and vice versa
for anegative modulation index. As a detailed gain modulation of all
neurons in the network can be considered less biologically plausible,
we selected the 10% of neurons with the largest positive effect on the
imaginary part and labelled them as speed cells, and the 10% with the
largest negative effect and labelled them brake cells. To increase the
network oscillation frequency, weincreased the gain of the speed cells
and decreased the gain of the brake cells (Fig. 4). To decrease the net-
work oscillation frequency, we did the opposite (that is, we decreased
the gain of the speed cells and increased the gain of the brake cells).

Gain modulation for multifunctional activity: switch cells. Togener-
ate different motor behaviour from the network, we identified a subset
ofneurons that had alarge influence on the neuronal phase distribution
of the dominant eigenmode. Starting with a default value for the gain
of g=1.1, we first calculated the phase for each interneuron from the
eigenvector corresponding to the largest eigenvalue of the effective
connectivity matrix gl. We then increased the gain g; of each neuron
iindividually and calculated the effect on the phase distribution of the
now slightly different effective connectivity. The top 10% of the neu-
rons that caused the largest change in the overall phase distribution,
calculated as the circular standard deviation of the change in phase,
were selected as switch neurons. To generate two different distinct be-
haviours, we set the gain of the switch neurons to two different random
vectors with values uniformly distributedintherangeg;=1.1£ 0.3. The
circular standard deviation was calculated using circular statistics as
originally defined in ref. ¥ (section 2.3.3):

Oircular = N 2 log[R]

(where log is the natural logarithm of R which is the mean resultant
length of all observations in polar coordinates; hence, R is between
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0 and1). If the observed angles are close to each other, the resultant
length s close to1and o, i close to O.

Nerve readout. The nerve activity was modelled using a Gaussian noise
with zero mean and for which the standard deviation o(¢) of the distri-
bution depends on a threshold-linear readout from the interneuron
network:

o)=Y, M0 ] 8y

in which M, represents the readout weights and [], indicates that the
width can only be positive. The readout weights were constrained to
respect Dale’s law; that is, excitatory interneurons could only have
positive weights and inhibitory interneurons could only have negative
weights. We used two different ways of setting up the linear readout.

For readout based on the phase of the dominant eigenmode, the
simplest method used was to use readout weights M,based on the phase
of each neuron iin the network oscillation. The phase of all neurons
was estimated from the eigenvector corresponding to the largest
eigenvalueA,,,, of the connectivity matrix W. To set up the readout for
aspecific nerve, wefirst assigned the nerve a phase 0,..,... For excitatory
neurons that had a phase of 6,.,,. /8 we set M;=1, and set M, = O for
all other excitatory neurons. To generate reciprocal inhibition in the
nerve input, we selected inhibitory neurons with a phase of
(Brerve T M) T/8and set M;=-1,and M, = O for all others. To set up a pair
of flexor-extensor nerves with alternating activity, we set Gqoyor = /2
and gextensor =-T/2.

For optimized readout for multifunctional output, we first selected
two distinct gain vectors for pocket and rostral scratching behaviour,
respectively (see above), and simulated network activity using these
gain vectors. To find the appropriate readout weights, we then set up
sinusoidal target functions for the nerve function ‘input’ (that is, the
suminequation (1)) for each behaviour and for each nerve separately.
The flexor and extensor nerves were phase-shifted by . The pocket and
rostral scratching behaviours had different relative timing between the
knee and hip flexor nerves, shifted by mas well as different amplitudes
(Fig. 5). Readout weights were then found using alinear least-squares
algorithmwith bounds on the variables (implementedin Python using
scipy.optimize.lsq_linear) such that the weights M;could only be posi-
tive for excitatory neurons and negative for inhibitory neurons.

To translate the nerve readout to the position of the knee and foot,
we set up asimple model thatintegratesthe nervedriveto calculatethe
angle O of the foot-knee joint resulting from the flexor and extensor
nerves (Fig. 5 and Supplementary Video 3):

TonuscleO(0) = welflexor(t) — extensor(t) - (0 - 0,)]

in which 7., = 10 ms represents the timescale with which a muscle
responds toamotor drive and w,is aweight that gives the force result-
ing fromaspecificdrive. Thelast termon theright-hand side represents
aweak decay back to the initial joint position of the limb. Joint angles
were limited to be within [0, T].

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Dataare available through alink to an online repository, which can be
found onthelaboratory web page (https://berg-lab.net/) or onreason-
able request from the corresponding authors.

Code availability

The Python code that was used for simulating the BSG network is avail-
ablein an online repository (https://github.com/BergLab/BSG). The
Matlab code for analysing the experimental data is available on the
laboratory web page (https://berg-lab.net/) or on reasonable request
fromthe corresponding authors.
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Extended DataFig.1|Firingrateis rhythmic withrotational population
dynamics across trialsin the lumbar spinal motor network during
rhythmic movement. a, Thefiring rates of 3 sample units (black) with their
spike timesindicated as blue dots. A sinus function was fitted to the firing rate
(red) and the meansquareerrorisindicated (bottomright).b, More sample
units, withthe meansquare errorindicated to the left. c, Distribution of mean
squareerrors for the population (n =214). The mean square error is unitless,

since the firing rates were high passfiltered and normalized (maximal firingis 1).

d, Thefiring rates (normalized, color coded) of 214 spinal neuronsinlaminae

VII-Vlll as a function of time and sorted according to phase with respect to the
nerve activity (hip flexor). Eight consecutive trials from same experiment with
aSminpauseinbetweeneach.e, The phase distribution across the neuronal
population. f, The population activity has rotational dynamics, as
demonstrated by the circular motion of the first two PCs. The PCs were
calculated by the data of one trial (trial 3,"*") and the applied to the rest of the
trials. The sorting of neurons was according to their phase relation with
representative nerve for one trial (also trial 3, "*") and this order was maintained
fortherestof the trials. Bottomscale bars represent1000.
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neuronsinlaminae VII-VIIIshownin colors as afunction of time and sorted two PCs exhibit rotational dynamics. Scale bars: 250. d, Cumulative explained
accordingto phase withrespect toanerve (hip flexor). Arepresentative trial variance by principal components, indicating the population dynamicsis
from S experiments of approximately 10 sdemonstrate similar sequential/ low-dimensional, i.e. most of the varianceis captured by few components.

rotational population activity. Animalused in Extended DataFig.1is marked "*".
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Extended DataFig. 3 |Neuronal population trajectoriesin PC-space have
lower tangling than the corresponding motor nerve trajectories.

a, lllustration that during rotational dynamics the pointsin the trajectory that
move inopposite direction are also far apart, i.e. they have low tangling (left),
whereas during alternation the points of the trajectory that move in opposite
directionarealsoclose, i.e. have high tangling (right). b, The ratio of tangling
metric ofthe PCtrajectory of the nerves (Q,.,.) to that of the network (Q,erwort)-
Thisratiois close to100%, whichindicates most trialsand animals had alarger
tangling of the motor nervesthan the network.(N =11, dataset1;N=10,dataset2;
N=10,dataset3; N=4,dataset4;N =3,dataset5).c-g, Sample trials from

Sdifferent datasets. Leftis shown the phase sorted firing rate activity (top) and
theassociated nerves (bottom). The nerves were rectified and low-pass filtered
(red) ontemporal scale matching the firing rates. The PCs of network (middle
left) and nerves (middleright, green). Scales of PCs are variance normalized.
The tangling metric (Q) for the nerve PCs (in 3 dimensions) is calculated as a
function of time (¢) through the trial and plotted versus that for the network.
Theratio of points below the x=y-line (pale blue) isindicated in percentand
formone pointin panel (b). Note that the nerve trajectories more resemble
"alternation” whereas the network more resembles "rotation"-scheme of (a).
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Extended DataFig. 4 |Rotational ensemble activity within the excitatory
and inhibitory sub-populationsinthe BSG-model. a, Activation of the motor
circuit by descendingdrive.b, The firing rates of 10 sample excitatory

neurons oscillate because of the descending input. (c) Sorting the excitatory
neurons accordingto phase of firing rates reveals a sequential activity like the
previously observed for allneurons. d-e, Activity and similar sorting of the
inhibitory sub-populations reveals similar sequential and rotational dynamics

within that sub-population. f, The network eigenmode for the whole network:
Eachdotrepresentboth the phase (the polarangle) and the peak firing rate (the
radius) foragiven neuron (n =200). g-h, Similar plot for the excitatory and
inhibitory populations. i-k, the distribution of phasesin linear histograms for
allneurons (i), excitatory (j) and inhibitory neurons (k). To be compared with
experimental distributions (Extended DataFigs.1and 2).
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rates) exhibit oscillation of increasing magnitude as the drive increase.

¢, Therotational dynamics also has aradius thatincreases withincreasing
drive.d, Theresulting motor nerve outputisalsoincreasinginamplitude.
e, Descendingdrive (gain) versus the population firing rate (RMS), radius
ofrotationin PCspace, f,and amplitude of nerve output (flexor RMS),
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overlap of adifferent behavior.Independent samples: N=Same behavior/
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N=3/4,dataset4;N=2/3,dataset5). Whisker plots represent minand max values.
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representation of the nerve activity of same behavior (green) and adifferent
behavior (orange). N=Same behavior/ different behavior:N =5/6, dataset1;
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N=3/3,dataset2;N=_8/10,dataset3; N =3/4,dataset4;N=2/3,dataset5).
Whisker plots represent min and max values. Box plots represent median -25%
and +75% quartiles. ¢, Nerve overlap plotted against the network overlap.
Alarge overlap innerve outputis associated with alarge overlap in network
overlap. Gray linerepresents alinear fit, red region represents 95% confidence.
d-aa, The flexor/extensor nerve output from the BSG-network. e, The sorted
neuronal population firing rate (n =400 neurons) with rotational dynamics.
(cc) Color map ofthe population firing rate. dd, Mean (red) and variance of the
populationactivity. e, same organization asin (d), but for experimental data.
Animalno.3trial 8.
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varyinginput (top). The firing rates for the sorted neuronal population (middle),
and theresulting motor nerve output pattern (bottom). c, The appropriate
motor programshownin (b) is achieved by a selective gain-modulation, i.e.
gain-profile (y-axis), across the neuronal population (x-axis). d, Population
activity from (b) represented by in PC-space by the first two components.

e, Whenthevaryinginput transientlybecomes toolow at acertain phase the
nervecycleisabsent,i.e.a"deletion" hasoccurred (red dots). The firing rates
ofthe neuronal population will be lower at these instances and hence appear
dimmer in the color map (middle). Aconsequent absence of aburstinthenerve
isseen (nerve 3,comparered andbluedots).f, the PC-trajectories corresponding
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Bottom: The nerve output of 3selected nerves (rectified and LP-filtered in
green, nerves 3,4 and 6). Thereconstructed standard deviations of the nerves
(orange) are multiplied by white Gaussian noise to imitate nerve output (gray).
c,thecorrelationbetween predicted and actual nerve output for the six nerves
(individual dots) are shown for two different motor behaviors (right and left
pocketscratching) across the 5 experiments. The median value across all
nervesand experimentsisR=0.6. All5datasets had correlations, which were
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correlation, p<<0.01,N = 6.d, Training set consisting of 9 bouts, ie. trials of
different motor behaviors, whichis used to trainalinear decoder function.
Top: color coded firing rates for the neuronal population (sorted according to
phase) with 9 concatenated bouts. Bottom: the rectified and low-pass filtered
motor nerve output of 6 nerves. e, twotrials, that was notincluded in the
training set, contained instances of "deletions”. Top: the firing rates of the
population, like (a). Bottom: The nerve output of 3selected nerves (rectified
and LP-filteredingreen, nerves 3,4 and 6). The reconstructed standard
deviations of the nerves (orange) are multiplied by white Gaussian noise to
imitate nerve output(gray). f, the correlation between predicted and actual
nerve output for the six nerves (individual dots) are shown for two different
motor behaviors (right and left pocket scratching) across the 5 experiments.
The medianvalue across all nerves and experimentsis R=0.6.All 6 correlations
were found significantly different than zero using a t-test of Pearson linear
correlation, p<<0.01,N=1300 temporal-measurements.
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