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Movement is governed by rotational neural 
dynamics in spinal motor networks

Henrik Lindén1 ✉, Peter C. Petersen1, Mikkel Vestergaard1,2 & Rune W. Berg1 ✉

Although the generation of movements is a fundamental function of the nervous 
system, the underlying neural principles remain unclear. As flexor and extensor 
muscle activities alternate during rhythmic movements such as walking, it is often 
assumed that the responsible neural circuitry is similarly exhibiting alternating 
activity1. Here we present ensemble recordings of neurons in the lumbar spinal cord 
that indicate that, rather than alternating, the population is performing a low- 
dimensional ‘rotation’ in neural space, in which the neural activity is cycling through 
all phases continuously during the rhythmic behaviour. The radius of rotation 
correlates with the intended muscle force, and a perturbation of the low-dimensional 
trajectory can modify the motor behaviour. As existing models of spinal motor 
control do not offer an adequate explanation of rotation1,2, we propose a theory of 
neural generation of movements from which this and other unresolved issues, such as 
speed regulation, force control and multifunctionalism, are readily explained.

The neural circuitry behind movement encompasses several distinct 
forebrain regions, the cerebellum and the brainstem. The core execu-
tive circuits for movement such as locomotion, however, reside in the 
spinal cord3. These spinal motor circuits, often referred to as central 
pattern generators (CPGs), are capable of autonomous generation of 
rhythmic coordination of muscles. Although great progress has been 
made in characterizing the cellular properties of spinal interneurons 
and motor neurons, including their genetic lineages4,5, the detailed 
network architecture and the associated neuronal ensemble dynamics 
remain elusive. Owing to the apparent right–left and flexor–extensor 
alternation, it has often been proposed that distinct groups of interneu-
rons, or ‘modules’, are active in a push–pull fashion and that the rhythm 
is ensured by cellular pacemaker properties1,2. It is unknown whether 
and how such organization and different motor programs are mani-
fested in ensemble activity of spinal networks.

Rotation in spinal motor circuits
Here we examined the activity in spinal motor networks using extra-
cellular multi-electrode recording in the turtle lumbar spinal cord.  
This preparation provided mechanical stability, which allowed simul-
taneous monitoring of large numbers of spinal interneurons in laminae 
VII–VIII and motor neurons during the execution of various rhythmic 
motor programs6–8. The firing rate of individual neurons was close to 
sinusoidal (Extended Data Fig. 1) and, as expected, rhythmic in relation 
to the nerves, but the population activity as a whole seemed incompre-
hensible (Fig. 1a,b). However, when sorting these neurons according 
to the phase of the motor nerve output, we found that the population 
activity resembled a continuous sequence, which covered all phases 
of the cycle (Fig. 1c). To better understand the sequential activity, we 
performed a principal component analysis of both the neuronal popula-
tion and the nerve activity. Both the neuronal activity and the six motor 

nerves followed a low-dimensional manifold (that is, most variance 
was explained by few components; Fig. 1d). Whereas the nerve activity 
seemed entangled, the neuronal activity had a simple rotation (Fig. 1e,f). 
Rotational population activity was independent of the sorting,  
and it was observed in all trials and across animals (Extended Data 
Figs. 1 and 2 and Supplementary Video 1). To quantify this distinction 
further, we applied a previously defined metric9, which quantifies the 
‘tangling’ of neural trajectories (that is, the degree to which points along 
the trajectory are close to each other, but move in different directions). 
We found the tangling to be larger for the muscle trajectories than the 
neuronal trajectories most of the time (>96.3%), which was consistent 
across datasets (Extended Data Fig. 3). As the tangling for rotational 
trajectories is lower than for trajectories with points that are close to 
each other and moving in the opposite direction, as would be the case 
for alternating activity (Extended Data Fig. 3a), these data are consist-
ent with a neuronal population that is executing a rotation. There did 
not seem to be any discrete phase preference as otherwise expected in 
an alternating modular network (Extended Data Figs. 1–3). Rotational 
dynamics has been observed in the motor cortex and elsewhere10–12, 
but it has not been described for spinal circuits previously. Neverthe-
less, indications can be found as wide phase distributions in the scarce 
literature on spinal population recordings6,13–15.

Theory to explain rotation
As conventional CPG theories, which are founded on a push–pull organi-
zation with intrinsically rhythmic modules16,17, do not readily explain 
rotational dynamics, we sought to explore a theory that can account 
for this and other open questions in spinal motor control. In particular, 
the mechanisms for generation of rhythms have remained nebulous. 
Cellular pacemaker properties have been suggested1, but decades 
of research have not been able to pinpoint a responsible cell type17.  

https://doi.org/10.1038/s41586-022-05293-w

Received: 28 September 2021

Accepted: 30 August 2022

Published online: xx xx xxxx

 Check for updates

1Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 2Present address: Department of Neuroscience, Max Delbrück 
Center for Molecular Medicine, Berlin, Germany. ✉e-mail: hlinden@sund.ku.dk; runeb@sund.ku.dk

https://doi.org/10.1038/s41586-022-05293-w
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-022-05293-w&domain=pdf
mailto:hlinden@sund.ku.dk
mailto:runeb@sund.ku.dk


2 | Nature | www.nature.com

Article

Here we propose that the rhythm arises as a network oscillation rather 
than through cellular properties. It is well known that a network that is 
close to the transition point of dynamical instability can have rhythmo-
genic properties without requiring specific cellular properties18.  
As the CPG network structure is unknown, we assumed a structure in 
which glutamatergic neurons were randomly and recurrently con-
nected. To prevent catastrophic runaway activity19,20, the excitation (E) 

was balanced by recurrent glycinergic inhibition (I) (Fig. 2a,b), in line 
withreports of balanced synaptic input in various motor circuits21–23.  
Balanced networks of this type are known to undergo a phase transi-
tion when synaptic weights are increased beyond a critical value24,25.  
For large networks, activity in this regime is chaotic26, whereas 
finite-sized networks in a dynamical regime close to the transition point 
may exhibit more regular activity27. A linearization of the dynamics 
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Fig. 1 | Neuronal population activity in the lumbar spinal cord has 
rotational dynamics. a, The activities of three selected motor nerves 
(electroneurogram) during rhythmic hindlimb scratching movement.  
b, Concurrent ensemble activity of spinal neurons in the turtle lumbar spinal 
cord as a raster plot (top, n = 214) and estimated firing rates (bottom). c, Sorting 
the neurons in b according to phase (hip flexor) reveals sequential activity.  

d, The first PCs explain most variance of electroneurogram activity (green)  
and neuronal ensemble activity (grey). e,f, The first two PCs of nerve activity  
(e) and neuronal population (f). Tangling of the nerve activity was higher than 
that of the network 96% of the time. One out of ten samples shown. Similar 
experiments repeated in five independent data sessions (four animals) with a 
total of 28 trials of one behaviour.
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Fig. 2 | Rotational dynamics emerges in the BSG model. a, The BSG model.  
An input drive activates a recurrent network with excitatory (blue) and 
inhibitory (red) neurons. The network can receive both synaptic input and  
gain modulation. A subset of cells provides motor output. b, The connectivity 
matrix has 50% excitation and inhibition. c,d, The firing rate is increased by 
synaptic input (bottom arrow; c), causing the eigenvalue spectrum to expand 
(purple versus grey, d) and cross the stability line (dashed red line, d) and thus 

generate a network oscillation. A gain modulation results in a change in slope 
(blue line and arrow, c). e, Input (top) and firing rates of five neurons (bottom). 
f, Sequential activity revealed by sorting according to phase, similar to 
experiments. g, Projection of the population firing rates on the two first PCs 
reveals a rotation. h, The model nerve output displays alternating activity.  
i, Flexor and extensor nerves are innervated by antiphase excitatory neurons in 
the strongest eigenmode (blue and grey, respectively).
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close to this point (see the mathematical note in the Supplementary 
Information) demonstrates that finitely sized networks can generate 
oscillatory activity if the leading eigenvalue of the connectivity matrix 
has a nonzero imaginary part27. On the basis of this idea, we set up a 
model network of rate-based neurons with sparse connectivity for 
which an external input, in the form of a synaptic drive (for example, 
sensory related or descending from the brain), could move the eigen-
values of the connectivity matrix across the stability line owing to a 
change in the set point of the firing-rate function (Fig. 2c,d). A second 
type of input that modulates the gain of individual neurons28 was also 
included to provide a mechanism to modify the network state. As the 
network received a sustained synaptic input, some of the eigenvalues 
moved beyond a critical level (red dashed line), which caused firing rates 
in the network to exhibit self-sustained rhythmic activity (Fig. 2d,e). 
When sorting the neurons according to phase, a sequential activity was 
revealed (that is, a rotation), similar to the experimental observations 
(Fig. 2f,g). We refer to a network in this state as a balanced sequence 
generator (BSG). Both the BSG model and the experimentally observed 
rotation are fundamentally different from conventional models, which 
are founded on alternation with the neurons having clustered phase 
preferences and belonging to modules composed exclusively of either 
excitatory or inhibitory neurons.

To model the output nerve activity from the BSG model, we con-
nected a subset of neurons on the basis of their phase in the dominant 
eigenmode to pools of motor neurons to provide the appropriate nerve 
activity. This resulted in an alternating nerve output resembling the 
experimental observations (Fig. 2h,i and Supplementary Video 2).  
Next we investigated the activity of the excitatory and inhibitory popu-
lations during the motor program in the BSG model. We found that 
both the E and I populations themselves exhibit similar sequences as 

the combined population activity (Extended Data Fig. 4). These results 
demonstrate that rotational dynamics can arise in simple networks 
without fine-tuning of parameters and result in an alternating nerve 
output, in line with our experimental findings (Supplementary Video 2). 
Although proprioceptive feedback from muscles and their reflexive 
circuitry was not included in the BSG model, we expect this feedback 
to improve the performance by stabilizing the rhythmic activity.

Control of force and period
Next we evaluated whether the BSG model could explain previously 
unsolved issues, such as independent control of force and speed of 
the movement. The ability to modulate the strength of the output and 
speed is key for volitional control but, to our knowledge, no mechanism 
has been proposed for controlling these independently. To investigate 
these aspects in the model, we used gain modulation (that is, the slope; 
Fig. 2c) of the neuronal firing-rate function around the working point 
set by the external input28. First, we found that collective (uniform) 
modulation of the gain by an input drive could indeed control the ampli-
tude in the BSG model (Fig. 3a–c). As the amplitude increased, so did 
the radius of rotation, whereas the frequency and sequence remained 
largely unaltered (Extended Data Fig. 5). To verify this prediction experi-
mentally, we inspected trials that, owing to an inherent variability, had 
various radii of rotation (Fig. 3e and Extended Data Fig. 1f). The radius 
of rotation had substantial correlation with the motor nerve activity 
(Fig. 3f,g and Extended Data Fig. 6), in line with the predictions from 
the BSG model and the proposed mechanism for amplitude control.

Next we explored whether the BSG model could control the period of 
the rhythm and thereby the speed of movement execution. Rather than 
collectively adjusting the neuronal gain of all neurons in the network, 
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Fig. 3 | Network control of amplitude in the BSG model. a,b, Increasing the 
common gain in the network (A–C; a) ramps up ensemble activity (b, top) and 
nerve output (b, bottom). c, Higher firing rates are associated with a larger 
radius of rotation in PC space (colour-matched with levels A–C). d, Correlation 
of radius (right) and gain (left) with nerve output. e,f, Experimental verification 

through trials 1–3 with different nerve outputs and radii (f, colour-matched).  
g, Nerve amplitude (r.m.s. ± s.e. of six nerves) versus radius of rotation (r.m.s. of 
PC1 and PC2); one-sided Wilcoxon test (*P = 0.016); linear regression, **P < 0.01, 
F-statistics, null hypothesis of zero correlation.
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we found that selective gain modulation of a subset of neurons could 
alter the frequency of the population activity without affecting the 
amplitude (Fig. 4). Individual gain modulation is a powerful tool in 
network control28, and here we systematically tuned the neuronal gain 
to identify a subset of neurons that had most influence on the period 
(Fig. 4a–f). Some neurons had a strong positive or negative effect, 
which we call brake and speed cells, respectively, whereas others had 
minor effects on the rhythm. There were both inhibitory and excitatory 
neurons among both the speed and brake cells (Fig. 4g,h). Interest-
ingly, cells with a speed-modulating capacity have been demonstrated 
experimentally29,30. However, as both excitatory and inhibitory neurons 
were found among the brake and speed cell categories in our model, 
an experimentally testable predication would be that also inhibitory 
neurons can have similar speed-modulating effects. The modulation 
capacity of individual neurons in the model is not due to their cellular 
properties, but rather their specific location in the network structure. 
A possible link between the network location, cell identity and speed 
control remains to be assessed.

Multiple motor programs
The ability to execute multiple motor behaviours (that is, a multifunc-
tional output) is the hallmark of the motor system31,32. Although cortical 
network models have already been demonstrated to generate mul-
tifunctional output33,34, contriving a model within the conventional 
framework of spinal motor circuits that can accommodate the rich 
repertoire of behaviours has so far been a major challenge. Here we 
focused on two well-known motor behaviours in the turtle and inves-
tigated these both experimentally and in the model. These behaviours 
consist of hindlimb movements, in which either the knee is protracted 
while moving the foot in small circles (pocket scratching) or the foot is 
protracted while the leg is stretched (rostral scratching)35. We reasoned 

that this multifunctional activity is caused by a perturbation of the 
rotational dynamics that in turn switches the phases of the resulting 
motor nerve outputs. To test this idea in the BSG model, we identified 
two subsets of neurons for which two distinct sets of gain modulation 
(gain profiles, Fig. 5a,b and Supplementary Video 3) caused a moderate 
change in the phase preference of individual neurons. A comparison of 
the resulting neuronal phase preferences between the two behaviours 
indicated that many of the neurons kept their timing in the sequence 
(Fig. 5f,g). We then optimized a set of readout weights to drive motor 
nerve activity that caused a phase shift of the hip angle between the 
two behaviours (Fig. 5c). In the resulting simulation, the nerve output 
of behaviour 1 had knee and hip extensors in phase (‘no shift’, Fig. 5d), 
whereas the second input pattern caused the phase of the hip extensor 
(and flexor) to change in relation to that of the knee extensor (Fig. 5e). 
Despite the marginal visual differences in population activity between 
the two behaviours (compare Fig. 5d,e and Supplementary Video 3), the 
network generated markedly different motor outputs. Using principal 
component analysis, we found that the switch between behaviours 
was associated with a change of the low-dimensional subspace of the 
rotational dynamics. When projecting the population activity of behav-
iour 2 onto the principal components (PCs) for behaviour 1 (red), the 
rotational dynamics had a smaller variance compared to the variance 
of behaviour 1 (black; Fig. 5h). However, a comparison with the vari-
ance of the projection of the ‘native’ PCs of behaviour 2 (not shown) 
showed that this was not due to a markedly lower variance of behaviour 
2 compared to behaviour 1, but instead that a fraction of the variance 
was in another subspace. By computing the ratio between the variance 
explained in these two subspaces36, we quantified the subspace over-
lap between the two behaviours to be 0.49. These model results were 
qualitatively similar to the experimental data, in which the sequential 
activation, although not identical, remained during the two behaviours 
(Fig. 5i–m). The subspace overlap here was 0.34 (Fig. 5m). A similar 
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Fig. 4 | Modulation of period in the BSG model. a, Adjusting the neuronal gain 
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c,d, When activating brake cells while impeding speed cells (gain profile, top 
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ensemble activity; bottom, nerve output. The radius of rotation is largely 

unchanged (PCs top right), indicating a similar amplitude of motor output.  
e, Reversed activation results in a faster rhythm (0.9 Hz). f, Gradually modulating 
the speed and brake cells (inset) can either decrease or increase the frequency. 
g, The capacity to modulate the rhythm has a bell-shaped distribution. Brake 
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trend was seen across trials, behaviours and datasets (Extended Data 
Fig. 7). Finally, we tested whether other distinct motor patterns could 
be evoked in the BSG model. A plethora of patterns or ‘gaits’ could 
be induced through different gain profiles, with a similar diversity 
to that of real motor patterns (Extended Data Fig. 8). This suggests 
that activating a spinal network to generate a desired motor pattern in 
general translates to finding the appropriate combination of neurons 
to modulate (for example, by trial-and-error-based motor learning)37.

Discussion
We have presented evidence that, rather than exhibiting alternat-
ing activity, the spinal network behind rhythmic movement exhibits 
low-dimensional dynamics that can be described as a rotation in neural 
space. During motor programs, the activity of the spinal population 

continuously cycles through all phases, whereas the resulting nerve 
activity is alternating (Fig. 1). Using computational modelling, we have 
shown that the core function of a spinal CPG (that is, to convert a con-
stant input to a rhythmic motor output) can be achieved by a simple 
balanced network that undergoes a transition to an oscillatory state. 
The alternating nerve activity is then obtained by a readout from cer-
tain phases of the rotational population activity (Fig. 2). This model 
stands in contrast to conventional CPG theories that rely on cellular 
properties for rhythm generation and a modular hierarchy for pattern 
generation1,2.

It is important to note that our theory of rotation does not exclude 
the role of specific cell types4 (for example, for left–right coordination 
or speed control29,30) and that cell-type-specific connectivity could be 
included in the model to obtain a theoretical understanding of its effect 
on the resulting neural dynamics38. Similarly, the role of intrinsic cellular 
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properties (for example, nonlinear adaptation) could be included to 
elucidate their role in shaping network oscillations27. However, as there 
is rich diversity among spinal interneurons (with, for instance, more 
than 50 subsets of the GABAergic interneuron39), inclusion of only 
partial cell-type mappings is unlikely to offer better insight into the 
dynamical properties of the network. Such complexity is not necessary 
to explain rotational dynamics.

The BSG model has all phases represented evenly in the population, 
which is a result of the simplified random connectivity (Fig. 2b). Skewed 
phase representation could be achieved by including more structured 
connectivity, such as variable degrees of convergence and divergence 
while keeping the E/I balance. The random connectivity in our model 
was chosen as the most parsimonious structure in the absence of an 
experimentally derived core CPG connectome. However, the mecha-
nism we propose to be behind the rotational dynamics could be found in 
other types of network architecture. Random connectivity is therefore 
not a requirement for our theory of rotational dynamics.

This theory also explains ‘deletions’, during which nerve bursts are 
missing whereas the overall rhythmic pattern continues (Extended Data 
Fig. 9). Depending on the exact readout direction (which would prob-
ably involve PCs beyond the first three), even a relatively modest change 
in the population trajectory could cause a large change (for example,  
a deletion) in the readout (Extended Data Fig. 10). This suggests that a 
separation of spinal rhythm- and pattern-generating layers, as previ-
ously proposed2, is not necessary to account for deletions.

The ability to generate multiple movement patterns has already 
been studied for cortical networks25,28,33,34, but the issue of multifunc-
tionality in spinal motor networks has remained an open question.  
In our model, we explored a mechanism to generate multiple rhythmic 
motor patterns in the same spinal network by gain modulation of a 
subset of neurons in the network. Such subset modulation could be 
accomplished by cellular nodes that distribute sparse input to a larger 
population, as has been observed for spinal motor synergy encoders40.

Our theory could also be extended to account for non-rhythmic 
sequences by using a brief and targeted input drive, hence generating 
a single cycle of neural rotation, sculpted by selective gain modulation 
in the spinal network through descending commands from the brain. 
This could provide an important link between the motor circuits for 
rhythmic movement and those for non-rhythmic sequences, which is 
missing at present.
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Methods

In this Methods section, we describe the experimental protocols and 
the details of our computational modelling. The experimental data 
have been used in a previous study for a different purpose7.

Experimental methods
The surgical procedures comply with Danish legislation and were 
approved by the controlling body (The Animal Experiments Inspectorate)  
under the Ministry of Food, Agriculture and Fisheries of Denmark  
(permission number 2018-15-0201-01504). Methods have previously 
been published in detail7,8,41. In brief, successful experiments on four 
adult (approximately 5 years of age) red-eared turtles (Trachemys 
scripta elegans), ordered from Nasco (https://www.enasco.com/), of 
both sexes formed the basis of this study. One of the animals was used 
twice on different days, resulting in a total of five datasets. The animal 
was placed on crushed ice for 2 h to ensure hypothermic anaesthesia41, 
then killed by decapitation, and its blood was substituted by perfu-
sion with a Ringer solution containing 120 mM NaCl, 5 mM KCl, 15 mM 
NaHCO3, 2 mM MgCl2, 3 mM CaCl2 and 20 mM glucose, saturated with 
98% O2 and 2% CO2 to obtain pH 7.6. The carapace containing the D4–S2 
spinal cord segments was isolated by transverse cuts, and the cord 
was perfused with Ringer’s solution through the vertebral foramen,  
by means of a steel tube and silicone gasket pressing against the D4 
vertebra. The motor nerves were cut to measure their activity and 
increase mechanical stability by preventing movements of the limbs. 
The preparation was placed on the back and fixed with glue in a cham-
ber with a constant flow of oxygenated Ringer’s solution to keep the 
cord submerged and the skin tissue moist41. The vertebrae (D8–D10) 
corresponding to the lumbar segments L2–L5 in mammals42 were care-
fully opened on the ventral side to allow access to the spinal cord for 
insertion of the multi-electrode arrays. We opened the spinal column 
on the ventral side along segments D8–D10 and gently removed the 
dura mater with a fine scalpel and forceps. For each insertion site of 
the multi-electrode arrays, the pia mater was opened with longitudi-
nal cuts along the spinal cord with the tip of a bent syringe needle tip  
(BD Microlance 3: 27G 3/4 in, 0.4 × 19 mm). The cuts were made in 
parallel in the ventral horn between the ventral roots. Blinding and 
randomization of the data collection was not applicable in this study.

Electrophysiology
To monitor the rhythmic activity and motor program state, electroneu-
rogram recordings were performed using suction electrodes on the hip 
flexor, knee extensor and dD8 nerves43 (that is, a total of six motor nerves 
(three from each side) at the level of the D9–D10 vertebrae). The elec-
troneurograms were recorded with a differential amplifier (Iso-DAM8, 
World Precision Instruments) with the filter bandwidth at 300 Hz to 
1 kHz, and sampled at 20 kHz with a 12-bit analog-to-digital converter 
(Digidata 1200, Axon Instruments), displayed by means of Axoscope 
and Clampex software (Axon Instruments). Custom-designed silicon 
probes were inserted into the lumbar spinal cord (D8, D9 and D10) in the 
anterior–posterior direction to minimize damage to the white matter 
fibre tracks. These segments correspond to the lumbar (L2–L5) spinal 
cord in mammals42. Up to four 64-channel silicon probes (that is, 256 
recording sites) were inserted (Berg64 from NeuroNexus). The probes 
had eight shanks and eight recording sites on each shank arranged in 
a staggered configuration with 30 μm vertical distance. The shanks 
had a thickness of 15 μm and were spaced 200 μm apart. Recordings 
were performed in parallel at 40 kHz using a 256-channel multiplexed 
amplifier (KJE-1001, Amplipex) to acquire the extracellular potentials 
of a large number of neurons, for post hoc polytrode spike sorting.

Motor network activation by cutaneous sensory input
Each scratch episode lasted approximately 20 s. A new trial was initiated 
after a 5-min rest. To reproducibly activate the scratching motor pattern, 

a linear actuator was applied to provide mechanical touch on the skin 
around the legs meeting the carapace. The somatic touch was controlled 
by a function generator (TT2000, Thurlby Thandar Instruments) and 
consisted of a 10-s-long sinusoidal movement (1–2 Hz). The touch was 
applied on the border of the carapace marginal shields M9–M10 and 
the soft tissue surrounding the hindlimb, which is the receptive field for 
inducing the pocket scratching motor pattern. Pocket scratching was 
elicited on either the right or the left side on the soft tissue surrounding 
the hindlimb representing two distinct behaviours. Further, the rostral 
scratching behaviour was elicited by similar touching of the carapace 
in the more rostral location on the shields. For reviews on the various 
motor patterns and the cutaneous activation, see refs. 31,44.

Five experimental datasets that fulfilled the requirements of both 
successful recording from large numbers of neurons, six motor nerve 
recordings, and activation of distinct motor behaviours were acquired. 
A summary of the parameters is shown in Supplementary Table 1. 
The electrode depths are indicated with respect to the ventral side, 
which puts the electrode arrays in Rexed laminae VII–VIII, where the 
motor-related interneurons are located.

Data analysis
All data analysis was performed in custom-designed procedures in 
Matlab (Mathworks, R2020b) or Python (https://www.python.org). 
Spike sorting was performed using KlustaKwik45. Spike rates were esti-
mated by convolving the neuronal spike times with a Gaussian kernel
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in which σ = 250 ms, to capture the slow modulation of the firing 
rate. The firing rates were further high-pass filtered with a three-pole  
Butterworth filter using a zero-phase filter (filtfilt.m) function in Matlab,  
with a cutoff frequency of 0.3 Hz. To better visualize the phase of neu-
ronal activity, the firing rate amplitude was normalized to unity and the 
mean was subtracted. The nerve activity was rectified and band-pass 
filtered from 0.2 to 5 Hz. This data filtering was performed on all of 
the data except the data involved in linear decoding, for which the 
slow components are an important element in the translation between 
population spiking and the nerve output.

Principal component analysis. Principal component analysis (PCA) of 
the multidimensional population firing rates was performed on the 
firing rate space (neural space). The principal components Un were 
determined as eigenvectors of the empirical covariance matrix C of  
the n firing rate traces, with the eigenvalues λn representing the absolute 
amount of variance in the data that each component can account for. 
The eigenvectors and eigenvalues were found through

CU UΣ=

in which U U U U= [ , , . . . , ]n1 2  contains the PCs (eigenvectors) Un and
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The PCA was performed in Matlab using the function PCA.m.  
A similar PC analysis was performed on the nerve activity, although 
these were only six-dimensional data (Fig. 1). The neuronal population 
activity plotted in PC space as a function of time was achieved by  
projecting the population vector, r t r t r t( ) = [ ( ), …, ( )]n1  (that is, a vector 
with the firing rates of all neurons), onto the PCs, giving the population 
vector in new coordinates, r t′( ):

r r Ut t′( ) = ( )

https://www.enasco.com/
https://www.python.org
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Subspace overlap analysis. A method for quantifying to what  
extent a PC subspace of one behaviour overlaps that of a different  
behaviour has been introduced previously36. To quantify the overlap 
between the low-dimensional subspaces of two different behaviours, 
we first computed the PCs of the two behaviours separately using PCA  
(see above). We then selected the first three PCs as their respective 
subspace. The overlap between subspaces was then calculated as the 
total variance captured by a projection of the first behaviour on the 
PCs of the other behaviour, divided by the variance captured by the 
projection onto its ‘native’ PCs36. We used the first three PC dimensions 
for this quantification in both experiments and model simulations  
(Fig. 5 and Extended Data Fig. 7).

Sorting of units according to motor phase. The firing rate of units 
was sorted according to motor phase through two steps. First, the 
frequency of rhythmic activity was identified by estimating the peak 
in the power spectrum of a representative nerve. For this purpose, the 
nerve activity was rectified and smoothed and subsampled to have the 
same sampling rate as the estimated firing rates. Second, the magnitude 
and phase of the coherence Cohi between this nerve activity and the 
firing rate of the ith neuron was estimated through46
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in which k is the number of multi-taper spectral estimates (k = 4). Rij 
and Nj are the individual spectral estimates using the discrete Fourier 
transform of the tapered firing rate of the ith neuron, ri(t), and the 
rectified and low-pass-filtered nerve trace n(t):
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and wj(t) is the jth taper function, the discrete prolate spheroidal (Slepian) 
sequences47. These taper functions and the Fourier transforms were 
calculated using the Matlab functions dpss.m and fft.m. The power spec-
tra of the firing rate of the ith neuron and the nerve were calculated  
as S R R= ∑ *xxi k j

j k
ij ij

2 1
=1
=  and S N N= ∑ *k j

j k
j jnerve

2 1
=1
= , in which the asterisks indi-

cate a complex conjugate. The phase of the ith neuron was chosen from 
Cohi(f) at the frequency for which the strongest peak in Snerve

2  was found, 
which was the rhythm of the motor pattern. On the basis of the phase, the 
neurons were sorted and their activity was plotted (for example, Fig. 1c).

Nerve activity measures. In some of the analysis, the motor output 
was measured as electroneurograms quantified using the root mean 
square (r.m.s.) of the traces after smoothing using the Savitzky–Golay 
finite impulse response filter. The r.m.s. of the electroneurograms are:

n
x x xENG =

1
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2
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2 2

in which x x x, , …, n1 2  are the electroneurogram (ENG) measurements 
and n is the number of samples. The r.m.s. values were calculated in 
Matlab using the procedure rms.m. The mean values reported (Fig. 3g) 
are the average of all six nerves. The error bars are the standard error 
of the means (that is, the standard deviation divided by 6). A pairwise 
statistical comparison was performed between trials, each having six 
measurements (the nerves), using the non-parametric Wilcoxon signed 
rank test through the procedure singrank.m in Matlab.

The relationship between the radius of PC rotation (r.m.s. of the 
first two components) and nerve output (r.m.s.) was verified using an 
F-statistic versus a constant model. The test statistic for the F-test on 
the regression model (Extended Data Fig. 6g,h) is a test of whether the 
linear fit is significantly better than a constant.

Nerve output prediction using a linear decoder. Linear decoding of 
neural ensembles (for example, in the primary motor cortex) has been 
used efficiently to control prosthetic devices using a brain–computer 
interface for individuals with tetraplegic conditions48,49. The idea is to 
use a linear filter, f (that is, a linear decoder), that can translate the fir-
ing rates of a population of neurons, written as a matrix R r t= ( ) over a 
time period, to a readout to control a set of muscles, N, such that N = Rf. 
The filter is first constructed from training data that describe the as-
sociation between the firing rate matrix R and the nerve output matrix 
N (Extended Data Fig. 10). The filter was estimated using the least- 
squares formulation from a closed-form expression50:

= ( )−1f R R R NT T

In this study, we form a prediction of the nerve output based on the 
linear decoding of the neuronal population activity in the spinal cord, 
for the intention of verifying how well a population measure can predict 
the output. This is relevant for the investigation of deletions. The pre-
diction of deletions purely from the sampled population activity can 
give insight into whether there are several layers in the motor network 
(that is, separation of rhythm and pattern generation), which has previ-
ously been proposed to explain non-resetting deletions in decerebrated 
cats and spinal cords isolated from neonatal rodents2,51–53.

Trajectory tangling metric of neuronal population and nerve activity. 
 The degree of tangling of the trajectories in neural space compared 
with that of the motor nerve trajectories has recently been quantified 
by a new metric9,54. We use this metric to quantify trajectory tangling 
in this study (Extended Data Fig. 3). In brief, the metric is the point in 
the multidimensional state space r(t), which can represent either the 
population firing rate or the activity of the group of motor nerves (six 
in our case), or the PCs thereof. The tangling, Q(t), is defined as the 
maximum squared Euclidean difference in velocity of the movement 
along the trajectory at two points in time, t and t′, r′(t) − r′(t′), divided 
by the Euclidean distance between the points squared:

Q t( ) = max
−

′
−

′
+t ′

2

2

r r
r r �

t t

t t

̇ ̇

This fraction is a basic measure of how different the velocity (speed 
and direction) is between two points on the curve divided by how far 
they are from each other. The unit of Q is s−2. If the trajectory is very 
tangled, there will be points that have different directions and are close 
to each other. Parts of the trajectory with low tangling will tend to move 
in the same direction if they are close to each other. ε is a small constant 
added to avoid division by zero. The value of ε is not important if it is 
small compared with the scale of the data. Similarly, the scale of the data 
should not affect the tangling metric if it is large compared with ε. As 
we are comparing firing rates and ENG nerve recording, which differ by 
several orders of magnitude, we scaled ε by the r.m.s. of the first PC. The 
derivative was estimated as the difference in r between neighbouring 
samples and divided by the sampling time. As this method tends to 
enhance noise, we first smoothed the trace with a kernel (500 point, 
Savitzky–Golay of second degree). We calculated the tangling of the 
first three PCs of firing rates of the neuronal population and compared 
it with the tangling of the first three components of the six-dimensional 
nerve activity. We used the fraction of time points for which the tan-
gling was higher for the nerves than for the network as a composite 
measure to compare across trials and animals (Extended Data Fig. 3).



Statistics and reproducibility
For Fig. 1, data were acquired in ten independent trials for that animal 
(eight trials shown in Extended Data Fig. 1). Similar measurements were 
performed over five independent data sessions (four animals) with a 
total of 28 trials of one behaviour (Extended Data Fig. 2). For Fig. 3, data 
were acquired in five independent data sessions (four animals) with 
a total of 49 trials. See also Extended Data Fig. 7. For Fig. 5, data were 
acquired in five independent data sessions (four animals) with a total 
of 49 trials. See also Extended Data Fig. 7.

BSG network model
The model consists of a network of interneurons and two or more 
nerve readouts that represent the motor commands resulting from 
the network activity.

Interneuron network. The interneuron network consists of N = 200 
neurons, of which half are excitatory and half are inhibitory. We model  
the activity of an example neuron i as a firing rate r g t V t[ ( ), ( )]i i  that 
depends on an activity variable Vi(t), analogous to a membrane poten-
tial, and a gain variable gi(t). We use a similar function to that used in 
previously published model28 adjusted to avoid negative firing rates:
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in which V
*

 represents the input level at which the slope of the firing 
rate function has its maximum (resulting in an output firing rate of 
r = V* (Hz)) and Vmax is the maximum deviation (in terms of firing rates) 
from V

*
. Here we set V

*
 = 20 and Vmax = 50, resulting in a maximum firing 

rate of 70 Hz. The dynamics of the network is determined by
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in which τ = 50 ms is a time constant representing the combined mem-
brane and synaptic timescale, W is a matrix that describes the network 
connectivity (see below), and Ie(t) is a time-varying external drive that 
consists of a constant input and a noise term I t I t ν( ) = ( ) +e , in which the 
noise term v is Gaussian noise with zero mean and a standard deviation 
of 4. The network thus receives two types of external input: a common 
external input (‘drive’) Ie that is used to cause a transition from a quiet 
state to an active rhythmic state (Fig. 2), and an input that sets the gain 
gi of individual neurons that is used to modulate the network activity 
in terms of amplitude (Fig. 3), frequency (Fig. 4) or for multifunctional 
behaviour (Fig. 5). For simplicity we used a constant input drive Ie = 20 
when studying the effects of gain modulation in the network.

Network connectivity. The connectivity of the network is assumed to 
be sparse8 with a pairwise connection probability C = 0.1. The synaptic 
weights in the network are assumed to be balanced; that is, excitatory 
(positive) weights, wex, are equal in magnitude to inhibitory (negative) 
ones, win. To ensure that the incoming connections are balanced for 
each neuron, we construct the connectivity matrix W as follows. We 
start with a matrix in which all elements are zero. For each neuron, we 
then select CN/2 presynaptic excitatory neurons and assign them the 
weight wex and CN/2 presynaptic inhibitory neurons and assign them the 
weight win. In this way, we ensure that the network is both globally and 
locally balanced55 (that is, the incoming synaptic weights are balanced 
for each neuron). The synaptic weights are set according to

w
NC C

=
1
(1 − )ex

with w w= −in ex (ref. 56). This results in a connectivity matrix W with a 
spectral radius of 1 (Fig. 2d); that is, the largest eigenvalue λmax = 1 on 
average over network realizations. The dynamical stability of the net-
work dynamics is determined by the external input Ie, the network 
connectivity W and the gain parameter g and can be analysed using 
linear stability analysis of the effective connectivity matrix gW (see the 
mathematical note in the Supplementary Information). A unity spectral 
radius of the connectivity matrix combined with a uniform gain g = 1 
results in a network that is on the edge of instability. As a default, we 
set g = 1.2 resulting in a linearly unstable network. Furthermore, as not 
all randomly connected networks are expected to generate oscillations 
(see the mathematical note in the Supplementary Information), here 
we selected only connectivity matrices for which the largest eigenvalue 
λmax had a nonzero imaginary part.

Gain modulation for amplitude control. To control the amplitude 
of oscillations in the network model, we adjusted the gain parameter 
g uniformly for all neurons in the network. As a larger neuronal gain 
results in a larger firing rate for the same synaptic input, the overall 
amplitude of the oscillatory activity can be expected to increase as the 
neuronal gain is increased in the network.

Gain modulation for frequency control: speed and brake cells. 
To control the frequency of oscillations in the network, we adjusted 
the gain gi individually for selected neurons in the network. A simple 
procedure was set up to estimate the influence of each neuron on the 
overall frequency. The gain gi was increased and decreased by a small 
amount, and the spectrum of the effective connectivity matrix gW was 
calculated (Fig. 4a). Depending on whether that imaginary part of the 
largest eigenvalue λmax was increased or decreased (corresponding to 
an expected increased or decreased oscillation frequency), we assigned 
the neuron a rank depending on its frequency modulation capacity. A 
positive modulation capacity means that an increase in gain or drive to 
that neuron will increase the frequency of the rhythm, and vice versa 
for a negative modulation index. As a detailed gain modulation of all 
neurons in the network can be considered less biologically plausible, 
we selected the 10% of neurons with the largest positive effect on the 
imaginary part and labelled them as speed cells, and the 10% with the 
largest negative effect and labelled them brake cells. To increase the 
network oscillation frequency, we increased the gain of the speed cells 
and decreased the gain of the brake cells (Fig. 4). To decrease the net-
work oscillation frequency, we did the opposite (that is, we decreased 
the gain of the speed cells and increased the gain of the brake cells).

Gain modulation for multifunctional activity: switch cells. To gener-
ate different motor behaviour from the network, we identified a subset 
of neurons that had a large influence on the neuronal phase distribution 
of the dominant eigenmode. Starting with a default value for the gain 
of g = 1.1, we first calculated the phase for each interneuron from the 
eigenvector corresponding to the largest eigenvalue of the effective 
connectivity matrix gW. We then increased the gain gi of each neuron 
i individually and calculated the effect on the phase distribution of the 
now slightly different effective connectivity. The top 10% of the neu-
rons that caused the largest change in the overall phase distribution, 
calculated as the circular standard deviation of the change in phase, 
were selected as switch neurons. To generate two different distinct be-
haviours, we set the gain of the switch neurons to two different random 
vectors with values uniformly distributed in the range gi = 1.1 ± 0.3. The 
circular standard deviation was calculated using circular statistics as 
originally defined in ref. 57 (section 2.3.3):

σ R= −2 log[ ]circular

(where log is the natural logarithm of R  which is the mean resultant 
length of all observations in polar coordinates; hence, R  is between  
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0 and 1). If the observed angles are close to each other, the resultant 
length is close to 1 and σcircular is close to 0.

Nerve readout. The nerve activity was modelled using a Gaussian noise 
with zero mean and for which the standard deviation σ(t) of the distri-
bution depends on a threshold-linear readout from the interneuron 
network:

∑σ t M ϕ t( ) = ( ) (1)i i i +






in which Mi represents the readout weights and []+ indicates that the 
width can only be positive. The readout weights were constrained to 
respect Dale’s law; that is, excitatory interneurons could only have 
positive weights and inhibitory interneurons could only have negative 
weights. We used two different ways of setting up the linear readout.

For readout based on the phase of the dominant eigenmode, the 
simplest method used was to use readout weights Mi based on the phase 
of each neuron i in the network oscillation. The phase of all neurons 
was estimated from the eigenvector corresponding to the largest  
eigenvalue λmax of the connectivity matrix W. To set up the readout for 
a specific nerve, we first assigned the nerve a phase θnerve. For excitatory 
neurons that had a phase of θ ± π/8nerve  we set Mi = 1, and set Mi = 0 for 
all other excitatory neurons. To generate reciprocal inhibition in the 
nerve input, we selected inhibitory neurons with a phase of 
θ( + π) ± π/8nerve  and set Mi = −1, and Mi = 0 for all others. To set up a pair 

of flexor–extensor nerves with alternating activity, we set θ = π/2flexor  
and θ = −π/2extensor .

For optimized readout for multifunctional output, we first selected 
two distinct gain vectors for pocket and rostral scratching behaviour, 
respectively (see above), and simulated network activity using these 
gain vectors. To find the appropriate readout weights, we then set up 
sinusoidal target functions for the nerve function ‘input’ (that is, the 
sum in equation (1)) for each behaviour and for each nerve separately. 
The flexor and extensor nerves were phase-shifted by π. The pocket and 
rostral scratching behaviours had different relative timing between the 
knee and hip flexor nerves, shifted by π as well as different amplitudes 
(Fig. 5). Readout weights were then found using a linear least-squares 
algorithm with bounds on the variables (implemented in Python using 
scipy.optimize.lsq_linear) such that the weights Mi could only be posi-
tive for excitatory neurons and negative for inhibitory neurons.

To translate the nerve readout to the position of the knee and foot, 
we set up a simple model that integrates the nerve drive to calculate the 
angle Θ of the foot–knee joint resulting from the flexor and extensor 
nerves (Fig. 5 and Supplementary Video 3):

̇τ Θ t w t t Θ Θ( ) = [flexor( ) − extensor( ) − ( − )]Θmuscle 0

in which τmuscle = 10 ms represents the timescale with which a muscle 
responds to a motor drive and wΘ is a weight that gives the force result-
ing from a specific drive. The last term on the right-hand side represents 
a weak decay back to the initial joint position of the limb. Joint angles 
were limited to be within [0,π].

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | See next page for caption.



Article
Extended Data Fig. 1 | Firing rate is rhythmic with rotational population 
dynamics across trials in the lumbar spinal motor network during 
rhythmic movement. a, The firing rates of 3 sample units (black) with their 
spike times indicated as blue dots. A sinus function was fitted to the firing rate 
(red) and the mean square error is indicated (bottom right). b, More sample 
units, with the mean square error indicated to the left. c, Distribution of mean 
square errors for the population (n = 214). The mean square error is unitless, 
since the firing rates were high pass filtered and normalized (maximal firing is 1). 
d, The firing rates (normalized, color coded) of 214 spinal neurons in laminae 

VII-VIII as a function of time and sorted according to phase with respect to the 
nerve activity (hip flexor). Eight consecutive trials from same experiment with 
a 5 min pause in between each. e, The phase distribution across the neuronal 
population. f, The population activity has rotational dynamics, as 
demonstrated by the circular motion of the first two PCs. The PCs were 
calculated by the data of one trial (trial 3, "*") and the applied to the rest of the 
trials. The sorting of neurons was according to their phase relation with 
representative nerve for one trial (also trial 3, "*") and this order was maintained 
for the rest of the trials. Bottom scale bars represent 1000.



Extended Data Fig. 2 | Rotational population dynamics in a spinal motor 
network across animals. a, The rhythmic firing rates in populations of spinal 
neurons in laminae VII-VIII shown in colors as a function of time and sorted 
according to phase with respect to a nerve (hip flexor). A representative trial 
from 5 experiments of approximately 10 s demonstrate similar sequential/
rotational population activity. Animal used in Extended Data Fig. 1 is marked "*".  

b, The corresponding distribution of neurons having preferred phases among 
the population of rhythmic neurons. c, Population activity represented by first 
two PCs exhibit rotational dynamics. Scale bars: 250. d, Cumulative explained 
variance by principal components, indicating the population dynamics is 
low-dimensional, i.e. most of the variance is captured by few components.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Neuronal population trajectories in PC-space have 
lower tangling than the corresponding motor nerve trajectories.  
a, Illustration that during rotational dynamics the points in the trajectory that 
move in opposite direction are also far apart, i.e. they have low tangling (left), 
whereas during alternation the points of the trajectory that move in opposite 
direction are also close, i.e. have high tangling (right). b, The ratio of tangling 
metric of the PC trajectory of the nerves (Qnerve) to that of the network (Qnetwork). 
This ratio is close to 100%, which indicates most trials and animals had a larger 
tangling of the motor nerves than the network. (N = 11, data set 1; N = 10, data set 2; 
N = 10, data set 3; N = 4, data set 4; N = 3, data set 5). c–g, Sample trials from  

5 different data sets. Left is shown the phase sorted firing rate activity (top) and 
the associated nerves (bottom). The nerves were rectified and low-pass filtered 
(red) on temporal scale matching the firing rates. The PCs of network (middle 
left) and nerves (middle right, green). Scales of PCs are variance normalized. 
The tangling metric (Q) for the nerve PCs (in 3 dimensions) is calculated as a 
function of time (t) through the trial and plotted versus that for the network. 
The ratio of points below the x = y–line (pale blue) is indicated in percent and 
form one point in panel (b). Note that the nerve trajectories more resemble 
"alternation" whereas the network more resembles "rotation"-scheme of (a).
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Extended Data Fig. 4 | Rotational ensemble activity within the excitatory 
and inhibitory sub-populations in the BSG-model. a, Activation of the motor 
circuit by descending drive. b, The firing rates of 10 sample excitatory 
neurons oscillate because of the descending input. (c) Sorting the excitatory 
neurons according to phase of firing rates reveals a sequential activity like the 
previously observed for all neurons. d-e, Activity and similar sorting of the 
inhibitory sub-populations reveals similar sequential and rotational dynamics 

within that sub-population. f, The network eigenmode for the whole network: 
Each dot represent both the phase (the polar angle) and the peak firing rate (the 
radius) for a given neuron (n = 200). g-h, Similar plot for the excitatory and 
inhibitory populations. i-k, the distribution of phases in linear histograms for 
all neurons (i), excitatory ( j) and inhibitory neurons (k). To be compared with 
experimental distributions (Extended Data Figs. 1 and 2).



Extended Data Fig. 5 | BSG-model: Correlation between descending drive 
and radius of rotation as well as amplitude of nerve output without 
affecting the period. a, For low neuronal gain (top), the eigenvalue spectrum 
does not have any eigenvalues that cross the stability line (broken vertical line). 
As the gain increases (downward direction) the spectrum expands, and 
eigenvalues cross the stability line. For larger gain the eigenvalues cross the 
stability line farther. b, The associated population dynamics (sorted firing 

rates) exhibit oscillation of increasing magnitude as the drive increase.  
c, The rotational dynamics also has a radius that increases with increasing 
drive. d, The resulting motor nerve output is also increasing in amplitude.  
e, Descending drive (gain) versus the population firing rate (RMS), radius  
of rotation in PC space, f, and amplitude of nerve output (flexor RMS),  
g. h, the radius of rotation (PC1 RMS) vs. the nerve amplitude (flexor RMS).
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Extended Data Fig. 6 | Radius of rotation correlates with nerve output in 
experiment. a, Sample trial where the population activity was divided up in 
pieces with the corresponding nerve output b. c, The PC manifolds had rotation 
with varying radius. d-f, other pieces with same organization. g, The RMS of the 

nerve activity versus the RMS of the first two PCs for various pieces of activity 
had a significant correlation (F-statistic of rejection of no trend at p«0.01).  
h, The R2 values for all animal tested (n=5). *: F-statistic of rejection of null 
hypothesis of zero correlation at p«0.01. f, Scale bar: 1000.



Extended Data Fig. 7 | Representation of one behavior in the subspace of 
another behavior. a, The variance captured by the projection of the network 
dynamics onto the first three PCs of another trial (green) normalized by the 
variance captured by the PCs of its own dynamics. Orange: the subspace- 
overlap of a different behavior. Independent samples: N= Same behavior/ 
different behavior, N = 5/6, data set 1; N = 3/3, data set 2; N=8/10, data set 3; 
N = 3/4, data set 4; N = 2/3, data set 5). Whisker plots represent min and max values. 
Box plots represent median −25% and +75% quartiles. b, the subspace 
representation of the nerve activity of same behavior (green) and a different 
behavior (orange). N=Same behavior / different behavior: N = 5/6, data set 1; 

N = 3/3, data set 2; N = 8/10, data set 3; N = 3/4, data set 4; N = 2/3, data set 5). 
Whisker plots represent min and max values. Box plots represent median −25% 
and +75% quartiles. c, Nerve overlap plotted against the network overlap.  
A large overlap in nerve output is associated with a large overlap in network 
overlap. Gray line represents a linear fit, red region represents 95% confidence. 
d-aa, The flexor/extensor nerve output from the BSG-network. e, The sorted 
neuronal population firing rate (n = 400 neurons) with rotational dynamics. 
(cc) Color map of the population firing rate. dd, Mean (red) and variance of the 
population activity. e, same organization as in (d), but for experimental data. 
Animal no. 3 trial 8.
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Extended Data Fig. 8 | Multifunctionalism in the BSG-model. a, Five 
examples of specific activation/modulation of selected neurons in the network 
("activation profiles"). The top profile has an even distribution, whereas all the 
below profiles have selective modulation of specific neurons. b, The ensemble 
activity as a result of the activation profile show a sequential activity, with 

similar but not identical sequence of activity. c, The first two PCs, based on the 
top activation profile, all exhibit rotational dynamics, albeit with different 
radius and trajectories. (d) the output motor patterns associated with the 
different activation profiles and ensemble activities.
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Extended Data Fig. 9 | "Deletions" both in the experimental data and in the 
BSG model. a, Six trials (1–6) shown with the neuronal firing rates sorted 
according to phase (color map, top) and the 6 nerves (bottom) during a motor 
behavior (pocket scratching). The absence of a burst, i.e. a deletion, was 
observed in the hip extensor nerve recording (red dots) whereas the hip flexor 
(bottom trace) seems to continue and combine two cycles although with a 
small decrease. Regular bursts are also indicated (blue dots). The corresponding 
trajectories in PC-space are shown with the corresponding dots matching the 
time in the nerve activity. A selected period around the occurrence of one 
delete is indicated in the nerve traces (red vertical lines). The corresponding 
time in the trajectory is also indicated in red. Note that deletions tend to occur 
at smaller radius of the rotation and the population firing rates (color map) are 
dimmer at those instances. b, A proper motor behavior devoid of "deletions" 
can be produced by the balanced sequence generator despite receiving a 

varying input (top). The firing rates for the sorted neuronal population (middle), 
and the resulting motor nerve output pattern (bottom). c, The appropriate 
motor program shown in (b) is achieved by a selective gain-modulation, i.e. 
gain-profile (y-axis), across the neuronal population (x-axis). d, Population 
activity from (b) represented by in PC-space by the first two components.  
e, When the varying input transiently becomes too low at a certain phase the 
nerve cycle is absent, i.e. a "deletion" has occurred (red dots). The firing rates  
of the neuronal population will be lower at these instances and hence appear 
dimmer in the color map (middle). A consequent absence of a burst in the nerve 
is seen (nerve 3, compare red and blue dots). f, the PC-trajectories corresponding 
to (e) indicated as 1,2 and 3. The temporary distortion of the trajectory at a 
particular phase is associated with a deletion (red dots). Red parts of the 
trajectory represent the period between vertical red bars indicated in the nerve 
activities (d–f). Compare with (a).
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Extended Data Fig. 10 | Reconstruction of nerve output based on linear 
decoding of neuronal population activity. a, A linear decoder function was 
estimated using a training set consisting of 9 trials of same behavior. Top: color 
coded firing rates for the neuronal population (sorted according to phase) with 
9 trials concatenated. Bottom: the rectified and low-pass filtered motor nerve 
output of 6 nerves. b, A trial, that was not included in the training set, is used for 
validation of the linear decoder. Top: the firing rates of the population, like (a). 
Bottom: The nerve output of 3 selected nerves (rectified and LP-filtered in 
green, nerves 3, 4 and 6). The reconstructed standard deviations of the nerves 
(orange) are multiplied by white Gaussian noise to imitate nerve output (gray). 
c, the correlation between predicted and actual nerve output for the six nerves 
(individual dots) are shown for two different motor behaviors (right and left 
pocket scratching) across the 5 experiments. The median value across all 
nerves and experiments is R = 0.6. All 5 data sets had correlations, which were 
found significantly different than zero using a t-test of Pearson linear 

correlation, p << 0.01, N = 6. d, Training set consisting of 9 bouts, ie. trials of 
different motor behaviors, which is used to train a linear decoder function. 
Top: color coded firing rates for the neuronal population (sorted according to 
phase) with 9 concatenated bouts. Bottom: the rectified and low-pass filtered 
motor nerve output of 6 nerves. e, two trials, that was not included in the 
training set, contained instances of "deletions". Top: the firing rates of the 
population, like (a). Bottom: The nerve output of 3 selected nerves (rectified 
and LP-filtered in green, nerves 3, 4 and 6). The reconstructed standard 
deviations of the nerves (orange) are multiplied by white Gaussian noise to 
imitate nerve output (gray). f, the correlation between predicted and actual 
nerve output for the six nerves (individual dots) are shown for two different 
motor behaviors (right and left pocket scratching) across the 5 experiments. 
The median value across all nerves and experiments is R = 0.6. All 6 correlations 
were found significantly different than zero using a t-test of Pearson linear 
correlation, p << 0.01, N = 1300 temporal-measurements.
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